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ABSTRACT

We congider the Fourier transform of a positive function f£(-) (or
its sample Fourier transfomm, as a possibly complex covariance function
of a hypothetical stationary complex-valued time series. We model this
time series by an autoregressive process ol ordexr p whose spectral

density approximates (or estimates) the funztion £(°) .

We show the equivalence of this intexprutztion with the theory of
orthogonal polynomials on the unit circle; we study the consistency of

the autoregressive estimator as p increxre: with the sample size.

We also make an exploratory investigation of this new method as a
density estimation method following three approaches: the direct approach,

the hazard approach and the sparsity approach.
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SUMMARY

~— What hias been dome:

In Part I, we look at the autoregressive method from the practi-
cal standpoint. Our aim is twofold: |

— to find out how the autoregressive method behaves ‘n many
different situations, when the true answer is 2ither known or unknown -

— to compare the autoregressive method to other methnds of
curve estimation currently used: the karmel method, the spline method,

the orthogonal series method and a quantile expansion method.

Tt is properly impossible to summarize this kind of work. Omne
can form one's opinion only by reading the text and looking at the
pictures we produced. Our opinion is that the method is very versatile;
it always yields a positive function; it is very easy to use and it

works well!

In Part II, we lcok at the autoregressive method from the

theoretical standpoint.

In Chapter 3, we unify the time gseries interpretation and the
orthogonal polynomial interpretation of the autoregressive method.
From the time series point of view, our treatment ig slightly wmore
general than the current practice in that our autoreéfessive coeffi-

rients are complex numbers,

Chapters &4 and 5 are parallel.
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In Chapter 4, we study the different modes of convergence of
the autoregressive -ethod, that is the autoregressive method as an
approximation method.

The weakest result is Thecrem 4.1:
1f

1T
[ 0< [ f(x) & < =
-7
T
(1) ﬁ 0<J:n o =< )
ul
o <] log f(x) ax
-1
b4
1. then
7
1 1
lim [ - 2 £(x) dx = 0
poe J£Cx) £,(x)
and
m |f(x) - £ (x)l
lim [ Pl ax =0 .
£ (x)
P2 -T P

The strongest result is Theorem 4.3:
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1f
condition (1) holds
0O<ms f(x) M , a.e. in ([-mw,m)
(2) 4
£(*) = g() , a.e. in [-w,T]
s L@ «>%
then
lim £ (x) = %; . ————%;——5 , wnifoxmly .
P Iﬂ(e )l

In Chapter 5, we prove thc consistency cf the autoregressive

method as in Theorem 5.9:

3
1f (2) holds and 1lim B~ = 0 , then
n->w n

lim !f (x) - -IT . —-1——2 = 0 in probability uniformly.

n-nn' P ai ‘ﬂ(eix)l

Finally in Chapter 6, we apply these differert results to the

problem of dersity estimationm.

—— What has to be done:
In the theory:

We have to find the asymptotic distribution of the autoregressive
estimator when we allow the order p to increase with the sample size at
a given rate. Berk (1974) has worked in this direction. We have
weakened some of his assumptions for the consistency of the autcregress-

ive coefficients (see section 5.2), but we haven't touched the other
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problem.

Then will come the problem of finding global confidence bounds.

We also need a criterion to choose the order p .

In the applications:
The most important task here is probably to justify rigorously
the use of the autoregressive method in those cases where F(+) 1is

unbounded (see secticn 6.2).

We have not touched the problem of estimating the intensity

function of a counting process.
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INTRODUCTION

.n statistica’ analysis we are often interested in estimating
curves, probably because of the heavy emphasis on visual training in our
cultures. The curves are not always drawn b+ they could be as, for
example, in regression analysis: now people more routinely take a look
at residual plots to judge the fit to the data providéd by the regression

line (e.g., Tukey (1957U,, Feder (1974)).

Actually, there is increased interest in drawing the curves,
thanks to computer graphics. A few people hav very imaginatively pro-
posed -nd developed new ways of visualizing the data providing statisti-
cal scientists with aew means to gain insight into the data and to convey
these insights to their clients (e.g., Andrews (1972), Chernoff (1973),

Cleveiand and Kleiner (1975) ).

After a long domination of parametric techniques, we can now let
the data speak for itself., That is what the so~called non-parametric
techniques are attempting to do. There are already several non-parametric
estimators of curves like probability density iunctiens, hazard functioms,

intensity functioms, ... .

4 universal requirement seems to be the smoothness of the estima-
tors. Indeed, smoothness allov; easy integration and differentiation,
whea required. Estimators should also belong to the class of functions
they are trying to estimate. Finally the methods of estimation should

be easy to use.

We ceview briefly the general methods that have appeared in the

literature; then we expose the new autoregressive method.




But first a word on the notation. We will stick to the following
conventions:
—~— a function g(es) is approximated by a function gm(O) ,
where m denotes the order of approximation;
—— an approximator gm(-) is estimated by a function ;m(o) H
— a function g(e) is estimated directly from a sample by a
function gn(-) , where n denotes the sample sgize,

Also, in the appendix to this chapter one will find a glossary of the

terms that are followed in the text by an asterisk.
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0.1 The Kernmel Method

Ao

The kernel method was introduced and developed by Rosenblatt (1956)
and Parzen (1962). It gives a general way of estimating derivatives of
functions by smoothing the first differences of a crude estimator of
these functions (usually a step function), using a weight function

called a kernel,

Let £(=) =~ F'(e) . Suppose F(e¢) has been estimated at n
points xl,....x" (the data points) by Fn(O) . Then £(e¢) 1is estimated

by fn(o) :

) n 1 X=-X.\f
f(x) = % —&(—J)T (x, +0) - F (x -0)]
n EAL Y ]_n } n'%j

where —— K(*) , the kernel, and {hj} are chosen appropriately

s

—_— Fn(xj +0) - Fn(x - 0) 1is the value of the jump of

3

Fn(o) at xj .

Parzen and Rosenmblatt were interested in estimating a probability

density function (*). Then Watson and Leadbetter (1964) applied

indirectly the same technique to hazard functions (*) . It could aiso

be used for estimating sparsity function (*) or intensity functions (¥)

of counting processes; these applications have not been studied yet.
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0.2 The Quantile Expansion Method

This method is due to G. P. Sillitto (1969, 1971). It has to do

with estimating the quantile function (*), using shifted Legendre ortho-

gonal polynomials. From the derivative of the quantile function, the

sparsity function, one can easily get the density functiom.

Let F(e) be a strictly.increasing continuous distribution

function (*), and Q(e) the associated quantile function.

Let q(e) =Q'(e) and £(¢) =F'(e) . Then

1

S S S
£® = qFey ™ 1) = @)

The quantile function is estimated by

Q) = T (23 -1) \E (5
j=1
where — P;-l is the shifted (te [0,1]) Legendre polynomial of

degree (j - 1)
~
— A, 1is a linear combinal’ion of the order statistics.

3

One then computes qm(o) and estimzates f(+) by fm(') .

A ~ 1
£0Q(t) = =
q ()
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0.3 The Spline Method

In the practice nf density estimation, there s2ems to be different
apprecaches placed in this category. Boneva, Kendall and Stefanov's
method (1971) is really a variant of the kernel method wherz the chosen
kernel, called a deltaspline, satisfies certain extremsl properties

arrived at through an original application of the theory ~f splines.

More properly (as to the classification), une can smeoth the
smpirical quantile function or the empirical distributior functiou using
spline functions and tien differentiate these smooth versions, as in

Wahba (1971).

A general description of this second approach runs as follows:

k

j=1 0 2 corresponding set of estimatad

given an ordered set of knots {x.}
functional values {yi}t=1 » find a real-valued function F(e) such that
F(xi) = Y i=1,...,k
and other appropriate conditions are satisfied. These other couditions
define the class of spline functions to be used, e.g., cubic splines,

splines under tension, ... .

We have considered splines under tension where the extra condition
is that given g > 0 (the teusion factor), F"(e) - G2F(.) varies

lirearly on cach of the intervals [xi, xi+1] , i=1,...,k-1 .

This description was borrcwed from Cline (1974 . The imposed
linearity condition allows estimation of the {yi}§=1 by least-squares

method.
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Then

The Weighted Fourier Series Method
[-1r,7] .

4
Let £(¢) be nonnegative and defined on
o,
Q(v) = | elvxf(x) dx is determined by its value at v =0,1,2,... .
-1
Now if {(e) 1is square-integrable (*), we have the following inversion
formula:

-]
1(x) -~ 2-1;1 e 1 5(v)
v—_~-¢,
m .
If £(e) 1is unknown, we can estimate oQ(v) by (pn(v) =J‘ e %4 Fn(x) R
-1r

vhere Fn(-) is an estimator of the cumulative of £(e.) , and then

invert a weighted version of qk(o) to get fn(o)

(-]
1 s
.00 =55 T e Tw(v) @ (v)
v=-ﬂ
w(v) goes to 0O as ‘v‘ gets large. Watson (1969) has deter-

where
nined that the optimal weights are

] locr)|®
|2 +3 a - e

wiv)
Some have used 0 - 1 ueights (e.g., Krommal and Tarter (1968)).

Thaler {1974) has modeled the optimal weights from the sample.

Another approach that we favor is to use truncation along with

estimated optimal weights:
2 -ivx
NG X

fm(x) =
v= -m
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0.5 The Autoregressive Method

We now ccme to the main object of this dissertation. The aute-

regressive method got its name from time series analysis.

Let F(e) be a bounded nondecreasing function defined on

(-m,m}] . Let R(e) be the Fourier-Stieltjes transform of F(s) ,

Ty
R(v) = [ "™ arx) , |v] =0,1,2,...
-

Solve the following system (Yule-Walker equations).

- 9 - . ~ -

R(0) R(1) ««. RMm-1) Y R(-1)

R(-1) R(0) «e+ R(m-2) T R(-2) -
LR(-m%—l) R(-m+2) ... R(0) ) ..%m... ;.R(-m).J .

This can be seen either as fitting an mth order autoregressive

scheme (*) from the Yule-Walker equations involviug a complex stationary
covariance function R(e¢) , or as building a set <f orthogonal polynomials
on the unit circle, with basis the complex exponentials and inner product

defined by

ﬂ -
&h = [ g™ ne!™ darm
-17

The autoregressive approximator fm(c) is given by

1

fm(x) = o0 ° mix, ¢

‘1+a1meix+%e?.ix+.“ toe i




and is such that

o

T

[ e™ex)ax = Rv),  |v] =0,1,...,m
.-Tr m

Thug fm(-) is approximating Qgi:l in a certain way.
The autoregressive 2stimator is obtained in the same way, except

that R(e) has to de estimated first by Rn(o) .

-~
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Appendix

0.A.1 Glossary of Terms

1 - A distribution function F(e) is a nondecreasing function continu-

ous from the right and such that 1lim F(x) = 0 and lim F(x)=1.
X =@ x> 4

We will usually consider that F(e) is absolutely continuous with

respect to Lebesgue measure, i.e., we will assume the existence of

a2 function f£(s) , called a density function, such that

x
F(x) = J‘ f(u) du . Then, f£(e¢) = F'(e) 2a.e. Sometimes, we
. -]

x

assume that f(e) 1is square integrable, i.e. ‘f ‘f(u)‘zdn <o
-0

2 - Suppose that the distribution function F(e) 1is strictly increasing
and absolutely continuous. Then we can define the functional in-

verse of F(e) , denoted Q(e) , called the quantile function. Q(e)

is defined on [0,1] and if t = F(x) , then Q(t) =x ., Under
the preceding conditions, there exists a function q(e) , called

the sparsity function, such that q(e) = Q'(e) . Now if we let

f.») = F'(e) , we will have the following relations:

£(x) end q(t)

- —L a1t
q(F(x)) £(Q(t))

Tukey may have been the first one to use the term "sparsity.”

3 - Now let F(e) be an absolutely continuous distribution function

defined on ([0,») . The hazard function .(e) is defined as

h(x) = :5% log(l - F(x)) = TL_(—;(L)J
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It is interpreted as an instantaneous failure rate

RUY

Px<Ts x +dx!'T> x)
dx

lim h(x)

dx-0

where T is a random variable with distribution F(e) .

4 - For a counting process N(t) , we can define the concept of an

intengity function A(e) as .

ME) = S E[N(r)]

where E[e] denotes the expectation of a random variable.

th . R s .
5-An m order aut~regressive scheme is a stochastic process satis-

fying the following difference equation

X(t) +a,1mX(t-1) + ... +omX(t:-ln) = e(t)

where the €(e¢)'s are uncorrelated.




PART I - EMPiRICAL RESULTS
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W.en one is presented with a new and radically different way of
doing something for which there exists already quite a few techniques,
one is naturally cautious. There is a natural principle of economy that
needs to be respected before one may yield his approval. 1In thg next
two chapters we try to demonstrate in the most practical way that the
autoregressive method deserves to become a standard technique of non-

parametric curve estircation,

In the genesis of this work, the contents of these first two
chapters opened the way to several questions to which much attention
will be devoted in the second part. Also, in all fairness tc the com-
peting techuiques, we include some practical suggestioms that make them

perfom better.
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APPROXTMATING DENSITIES AND HAZARD FUNCTIONS
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Most of the time, people use simulation to validate a new method.
Tu the words of Boneva, Kendall and Stefamov (1971, p. 1): "We have for
the present worked chiefly with simulated material for the excellent
reason that what is essentially a diagnostic aid is most severely tested
when one knows what the answer should be." 1In simulation, the answer is
not exactly known. As a matter of fact, the sampling variability of the
simulation process can yield "bad" samples. Should we feel free to
sample until we get the "right'" answer? This liberty is not available

in the real data case. What can we do?

It depends on what the method can do. 1If the method can be used
in a non-stochastic context, then it is possible to validate it without
reference to sampling fluctuations. We call this process a first-hand
validation. If the method is inseparable from the stochastic context,
we may obtain consensus validation by comparing it to other methods

on the same data, This is referred tc as second-hand wvalidation.

Consider the kernel method for instance. A first-hand validation
would require n exact F(e) values. This would not be a very inform-
ative validation since we know that if n is large enough, even linear
internolation would give us a good fit for the derivative. The same can

be said of the spline method.

In the autoregressive method, a first-hand validation requires
knowledge of the true R(es) sequence. How many elements of the sequence

do we need to get an approximator fm(-) close enough to f£(e¢) ? Now

e e e merve————— v s
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this question remains meaningful in the real data case hecause the
sample size n does not compel us to choose any order m . So any
insight we gain from the validation process becomes handy when we are
confronted with real data. The same can be said of weighted Fourier

series,

Another reason to go tiarough this process has to do with the
structure of the estimation problem. Suppose we want to estimate a
function £(e¢) and f£f(e) can be expressed in a form suitable for

approximation by functions {fm(.)}:=l . We might then estimate fm(.)

P

by fm(-) . Now we have that

HORY RO FORE X0 RN IXORE XY |k

The validation process can be of much help in the study and control ci

the bias function bm(o) :
b (e) = £(o) - £(°)

In this chapter the emphasis is on validating the autoregressive
method, though we will make some comparisons with the weighted Fourier

series method,

In the probability density case, the function R(e) is simply

the characteristic function. Accordingly we shall adopt the more usual

notation @(e¢) in the ensuing discussion.
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‘ 1.1 The Idea of Truncating

W

A natural choice to start with is the Cauchy density

1 1 1 1
f(x) = = o —L2— =L 1
T oa+xdy T |1+ 1::‘2

with characteristic function ®(v) = e-!v‘ , as our approximators are

of the form

1

K
£ (X) = "‘2 .
" & |1+ ;a e‘j"\z
& j=1 jm

Figure 1 reproduces the first picture we obtained., Obviously
something had gone wrong. But then, our approximators are only defined
on ([-m,m] : more precisely they are periodic with period 2w ; and
the interval [-11,7%] contains only about 80% of the Cauchy distribution.
Moreover, even though the truncated density fT(-) is proportional to
the complete densitly £(+) on the interval of truncation T , it is

zero outside that interval., That is

..__g_gﬁ)__ . xET
f']:(x) = ¢ j;f(u) du
! 0 , x@T

Thus the Fourier transform of fT(O) s Q)T(o) , 18 not proportional to

the Fourier transform of £(s) ,P(s) .
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Let T be the interval [-m,77] . When £(e¢) is known, we can
evaluate ¢&(-) directly using the Fast Fourier transform technique.

I1f only @(e) is known and is integrable, then

sin m(w -
w=-v

™ = 5[ ew 2 4y

vwhere

K—l = J‘ (W) sn:”nw .
-0

- Using this correction, we produced Fig. 2 and 3 that show a
remarkable fit. The distortion is not as important when most of the

area is contained in the interval T .

What happens when the density is defined only on a subinterval

of [-m,m] ? Consider for example the uniform demsity on [-1,1] with

characteristic function @(v) = 313 Y. Figure 4 shows a wild behavior

that is corrected only when the uniform density is made to fill the
whole interval [-m,m] as then ®(0) =1 and @(v) =0, V'# o,

for all values of m .

=1
which yields fm(-) = o

Note: The symbol o represents the true curve and the solid line

the fitted one, unless otherwise noted.
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1.2 The Idea of Averaging

The wild behavior depicted in Figure 4 is more or less typical.
This effect wears off quite rapidly in certain cases, but in others it
persists, This difference in behavior is intriguing. Let us see the

evidence.

Congider the standard Gaussian demsity. Why pay much attention
to the low order approximators (Fig. 5 and 6) as convergence is still
taking place (Fig. 7)? We could disregard this as an amusing oddity that
unimodality and bimodality altermate., But when we shift the density by
& small amount to a N(0.5,1) , the oddity becomes alarming because it

persists and is aggravated (Fig. 8 and 9).

Now let us superimpose these pictures (Fig. 10 and 11). We get
the remarkable fact that successive orders complerant each other, so that

if we average them (Fig. 1Z), the bias is greatly reduced.

This is not a problem of stability of the algoritim used, as the
phenomenon is observed both with real and complex characteristic func-
tions., HMore likely, this is related to the very structure of the
approximator. We will have to examine this in Part II in our study of

the bias function.
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1.3 The Idea of Svmmetrizing

The next important class of functions to be used in our valida-

tion study is the class of gamma densities (exponential, chi-square, ...)

The exponential density, with its discontinuity at the origin,
was expected to be difficult to spproximate mainly because the approxima-
tors are periodic (fm(-Tﬂ = ﬂm(ﬂ)) . Figures 13 and 14 illustrate
our fears. One way to compensate the basic disequilibrium of the tails

is to symmetrize the density so that both tails are equal.

We would like to point out that symmetry is not what matters but
rather that the tails be comparable, as our approximation of non-central

Gaussian densities show (Fig. 12}.

By symmetrizing the exponential density, we zget the Laplace (or
double-exponential} density, and the discontinuity at the origin is now
shifted down to the first derivative. 1In Figure 15 ve see that the
peak has been somewhat smoothed, but the fit is really good. The right

half gives us a nice exponential curve.

The chi-square densities with larger degrees of freedoa do not
present any discontinuity, but their left and right-hand tails are very

different. We shall compare symmetrization to scaling.

Let Y be a random variatle distributed as a rhi-square with

four degrees of freedom. Let X = 0.5Y . The density of . “s

-x
f(x; = xe .

e g ——




We symmetrize it to fx(x) = 0.5 ‘x‘ e-‘x] . Let us examine the

results.

By comparing Figures 16 and 17, we see that symmetrization pxo-
duces a smoother approximator than non-symmetrization for a given order.
The same holds true after averaging two consecutive orders (Fig. 19
and 20). But when we symmetrize, we usually have to go to higher orders
to get a better fit (Fig. 18). It is also possible to average more
orders to get better results (compare Fig. 21 with Fig. 19).

Let us now look at the density of X = 0.25Y, i.e.,
f(x) = 4x e-Zx . The right extremity is at about the same height as

s the left. The approximators now perform well at both tails (Fig. 22),

illustrating that symmetrization ic not what we really need when the

mode is more centrally locatea.

Note that symmetrization here is not taken in the same sense as

in Feller (1966). The difference is apparent at the characteristic
function level. Feller's procedure transforms the characteristic

function into its square modulus. Our procedure transforms it into

its real part.

- e an
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1.4 Comparison with the Weighted Fourier Series Method

We first note that, in the case of validation, the weighted
Fourier series method uses only O0-1 weights, i.e., the density is
approximated by successive truncated Fourier series. This method
requires as in the autoregressive method, that we truncate the density
to [-1,7] . We also note tnat this is the standard way to invert a

known Fourier transform. Thus, it should perform rather well.

For the Cauchy density, there is almost no difference between
the two methods (Fig. 23 and 24 compared to Fig. 2 and 3). But in the
case of the triangular demsity on [-11,71] , the autoregressive approxi-
mator wobbles about the true density (Fig. 25); averaging orders 8 and
9 reduces the bias pretty much (Fig. 26). But the truncated Fourier

series is right on the target (Fig. 27).

In the exponential case, we notice the same "odd-even" effect
(Fig. 28 and 29). But there are differences: both tails are badly
approximated (compared with Fig. 14) and the approximators become nega-~

tive. Symmetrizing improves the matter (Fig. 30) as in the autoregressive

method (Fig. 15).
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1.5 Approximation of a Hazard Function

When R(e) 1is taken as the Fourier transform of 1log (1l - F(.))-l,
the autoregressive method produces approximators of the hazard function
related to the distribution F(e) . In view of our previous work, we
did not feel that it was necessary to include more than one example,
which we have taken to be the hazard function of a truncated exponen-

tial (Fig. 31 and 32),

From the hazard function, it is possible to recover the original

density as follows:

xX
£x) = h(x) exp(~] h(w) du)
0

LY

When we apply this transformation to our hazard approximators, we obtain
the density approximators represented in Figures33 and 34, (Note we

modified the hazard approximators at the origin to be 1.)

= S i ——
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1.6 The Chi-square case revisited

The chi-square densities having shown to be more difficult to
approximate, they furnish a valid testing ground for some alternate
representations of the densities. We have already mentioned the hazard
representation and the excellent results it produced for the exponential.
In the chi-square case we obtain Figures 35 and 36 . ‘The results are

not so good.

There is another representation that has not been used very
often, namely the sparsity representation mentioned in the Appendix 0.A.1
(item 2). The pictures we obtain (Fig. 37 and 38) compare favorably to

direct approximators of higher order (e.g., Fig. 20).
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1.7 A Look at the Output Parameters

We have left aside up tc now all numerical considerations. To
draw ail the information contained in our validation work, there only
remains to ccnsider the output parameters that define our approximators:

the coefficients {ajm}m

j=1 and the proportionality factor %m that

normalizes the approximator to integrate to R(0) .

We consider only four cases to illustrate the points we want to
make.,

Table 1.1 exhibits the relation between the parameters and the
kind of picture we get. K and the coefficients {ajm}?=1 are con-
verging nicely, the same way fm(-) approximates the Cauchy density

(Fig. 2 and 3).

Table 1.1 Some parameters of the Cauchy density autoregressive
approximator
Order Coefficients Scale Factor
m Clm %2m o
1 -0.4838 - 0.7658
2 -0.5310 0.0974 0.7586
3 -0.5346 : 0.1175 0.7575
4 -0.5354 0.1198 0.7572
5 -0.5356 0.1203 0.7571
il -0.5358 0.1207 0.7570

{
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When K.m goes to 0O , the coefficients do not cnnverge, as in

Table 1.2. There is also the danger that Km will become negative, in

which case the approximator fm(-) is negative over the whole domain

[-mr,m] . Figure & is typical of the kind of picturs associated¢ with

this behavior.

Tabie 1.2 Some parameters of the Uniform (-1,1) density

autoregressive approximator

Order Ceoefficients
o %n %o
1 -0.8414
2 -1.5719 0.8681
3 -2.3304 2.2415
11 -8.4770 34.5193

Table 1.3 exemplifies slow convergence.
found it helpful to average consecutive orders.

are shown in Figure. 7, 8, 11 and 12.

Scale Factor

K
m

0.2919
0.0719

0.0170

1.39 x 107/

In such a2 case we have

The related pictures




v Table 1.3 Some parameters of the Normal (0.5, 1) density
£ autoregressive approximator
Order Coefficients Scale Factor
n LUm Tom K
1 (~0.5414,0.2936) 0.6205
2 (-0.7592,0.4069) (0.2230,-0.3302) 0.5220
3 (-0.8596,0.4538) (0.3679,-0,5211) 0.4816
9 (-1.0079,0,4961) (0.6383,-0.7415) 0.4245
10 (-1.0152,0,4966) (0.6535,-0.7471) 0.4218
11 (-1.0210,0.4969) (0.6656,-0.7511) 0.4196

-31-

From Tables 1.4 and 1.5, there does not seem to be differences
in convergence; this reaffirms our finding that there is no real gain
in symmetrizing when the mode is relatively central. This is in sharp

contrast with the exponential and Laplace cases in Tables 1.6 and 1.7.




Table 1.4

e g

Oxder

10

11

1 Table 1.5

Order

..3&-

Some parameters of the 0,5 Chi-square (4) density
autoregressive approximator

Coefficients

Um
(-0.1860,-0.1224)
(-0.2111,-0.1173)

(-0.2207,-0.1155)

(-0.2461,-0.1142)

(-0.2482,-0.1143)

Some parameters of the symmetrized Chi-

C2m

(0.1069,0.0426)

(0.1264,0.0369)

(0.1614,0.0347)

(0.1€42,0.0350)

autoregressive approximator

Coefficients
1m ooy
-0.0950
-0.1138 0.1970
-0.1065 0.1928
-0.0854 0.2432
~0.0837 0.2449

i e st o8, (AP §n TA LTI

gt ——

Scale Factor

o
0.9503
0.9377

0.9310

0.9097

0.3078

square (4) density

Scale Factor

Km
0.9909
0.9524

0.9511

0.9162

0.9140




Iable 1.6

Table 1.7

Some parameters of the exponential density
autoregressive approximator

Coefficients

Cm
(0.4998,-0.,5001)

(0.3997,-0.8001)

(0.2996,-0.9001)

(0.0782,-0.9936)

(0.0735,-0.9943)

Some parameters of the Laplace (symmetrized exponential)

%2m

(~0.4001,-0.1997)

(-0.6000, 0.0004)

(-0.5703, 0.4086)

(-0.5664, 0.4149)

density autoregressive approximator

Coefficients
Cim Com
-0.5456
-0.5209 0.1381
-0.6331 0.1928
~-0.6370 0.2027
-0.6370 0.2028

i oo

Scale Factor

K
m

0.4999
0.3999

0.3599

0.2936

0.2923

Scale Factor

K
m
0.7023
0.6889

0.6835

0.6820

0.6820




St g

1.8 Conclusion

1. It is important to realize that the autoregressive method approxi-
mates only functions truncated to [-1,m] and that the domain of defini-

tion of these functions should £fill the whole interval.

2, There seems to be a structural "odd-even" effect that can be

averaged out.

3. Symmetrizing improves the behavior of the approximators when the

functions have a maximum at the left end of the domain.

4, 1In view of the periodicity of the approzimators, they perform better

when both ends of the functions are comparable.

5. Satisfying approximators are related to the convergence of the

parameters.
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APPENDIX
i.A.1 Sample Programs for Approximation

We include in this appendix three sample programs, ome for each

of the approaches we used,

Each program is divided in 3 parts:

1 - Computing the R(°*) sequence

I1 -~ Solving the Yule-Walker equations in AUTOREG. This subroutine
can be found in the appendix to Chapter 3.

111 - Computing the density.
In the direct approach, II and II1 are confounded.

18t program: Approximating a symmetrized chi-square.

At the beginning, A(e) contains the function to be approxi-~
mated. Then, using two IMSL subroutines FFT2 and FFRDRZa'we compute
the R(*) sequence that is stored in A(¢) . This is the end of

Part I.

In Part 11, we solve the Yule-Walker equations and compute the
approximator stored in F(e) . NORM(e¢) contains the true trumcated
density being approximated ( NORM(e) is used only for plotting purposes).
We also average four consecutive orders, the average being stored in

G(*) .
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2nd program: Approximating the hazard of a chi~square.
The first two parts are as in the first program. At the end of

Part 11, F(e) contains the approximated hazard.

In Part 111 we reconstitute the density from the hazard function.

At the end of Part III, F{*) contalrns the approximated density.

3rd program: Approximating the sparsity of a chi-square.

In Part I, G(°*) contains the chi-square density and CF(*) 1is
the quantile function obtained by the trapezoidal rule. Then, we
rescale CF(e) to be between -1 and T, using subrcutines CENTER
and XSCALE , and compute in FOURSTI the R(*) sequence stored in
A(*) :

T 1 Y-
R(v) = J' e1v(2ﬂ' F(g)-m) dx =
-T7

by letting t = 2w-F(x) - 7T .

In Part II, we solve the Yule-Walker equations. F(e) now con-

tains the sparsity.

Finally in Part III, we recover the density. Subroutine

FOURSTL simply evaluates

n . 2
z VX)L ry)
j=1




<~ y3-

P ARy

using the function CSREC , which is a recursion for cosines and sines:

FUNCTION CSREC(C1,C2,C3)
CSREC = C1 *C2 - C3
C3 = C2

C2 = CSREC

RETURN

END
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2ROGRAM SWEEP LINPUT,0UTAUT, TAPES=INPUT »TAPEGZ0UTPUT)
. SOMFLEX AA
‘. SOMPLEX ALPHA(OO),PHI(3J).JH KH
INTEGER INK(12) \
SOMPLEX A(2048) [
DINENSIUN G (10« |
DIMENSION X(102),F(102) - -
JEAL NORME102) .-

dI=4.*ATAN({1.0)
THOPI=2.*P1I

VI=2048
FNI=NI —-- - T EE T E— - - came e b e L
J0 21 J=i,NI
FREQ=TWOPI*™ (U~1) /FNI =
A(J)=CHPLXLAISIFREQ=PI) *EXP(=ABS({FREQ~FI} by 0 o)~} = ——~
21 SONTINUE - - l -
CSALL FFT2(A 411, InK) - - A - '
sALL FFRDRZ(A.ll,INK)-—m-~;-f--= - s e e e e —
AA=A(1) -
1=15 - L .
JU 3 J=1i.,M - = .- - SR .
A(J) AtJI*L-1i%% U~ 1)/A(1) .

3 CONTINUE .
An=AA*TWGCGPL/FNI S
PRINT*, AA '
NP=1G0
FNr=NP
JU 13 I=1,NP
((Ll—oPI#(I-il‘THOPI/FNP ) }
>(1)=0. -~ . T
NORM{I)= AB)(X(I))*EXPK ABS(X(I))‘/A» I

13 JONTINUE . . [‘

- - .' - / ‘,:‘— —————

30 2 K=2,M - ‘ “
CALL AUTOREG(A,K’“’NP,’ALPHA9PHI,JH)KH,X.F) - - - - mand
[IF(KeNEe10 AND e KeNEs 11 AND oKeNEo12:ANDsKe N2 +13) GO TO 2
JO 2« I=1,NF
- 3{I1)=G(I)+0«25*F(I) - - - SRR
24 ONWTINUE

2 SONTINUE

5TOP
*NO




P
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FRUGFAM SWcFP(IMPUT,OUTFUT ,TAFZS=INPUT ,TAPEB=QUTIPUT)
CUMPLEX ~(27043)

COFouEX LCFHA{TIL) SPRI{ZI)y uryKH
aNTeGer IWK(12)

QEAL I‘CRF(-S&) ’X(J.ES),F(ASQ’
DIMENSION GUL32),4,CFl1o2)
DJLAENSION R(27),C(38)
PI=L,*ATEN(1,.7)

THUPIzZ,.*P]

NI=¢)ub

FNI=NI

« TT=(TWOFI+1l)*cXP(=-TWCPI)

24

25

?

AA=1."TT

00 2. J=i,NI

FREQ=TWOPI*(J-1)/FNI
ACJUY=CHPLA(FRIO*ZXF {~FrEQ) 7 (({FREQ*LLI*EXP(-FRcQ) -TT);0.)
CONTINUE

CALL FFT2(Ay11, I4K)

CALL FFRDF2(A,11,1IWK)

M=27

00 3 J=1,M

AL =ALU)*(=1)**(J=-1)*TAOPI/FNI
CONTIMUE

MP =i o

FiNP=NP

D0 13 I=1,MF

X{o)==FIe+ (L=L)*TWCPI/FNF
NOPMILI=(X{LI+PII*cXF{=~(X{L)+PI))/7uA
CONTINUE »
H=PI/FNP

\

Cn 2 K=2,¥

cAaLL AUTOREG(A,K’P,NP, ALPHA,PHI,JH,KH,X,F)
IF (KeNcea7ANDB.KoNCo27) GO TO €

FRINT* ,F

FLLi=2.

F(2)=(.35

G(Lh=¢

Jn 24 I=2,NP ' —
GLIN=Gla=-2) o> (F(I-1) ¢F (1)) il

CONT INUE —_
D3 25 I=1,MP

FEDI=F (DI *EX2{-G(I})

CONTINUE

FRINT®, F
FCNTINUE

STOV?
END




21

13
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FROGRAM SNLEF(INFUT,OUTFUT.TAP:5=INPUT,TAP56="UTPUT)

SCNMFLEX  AL3D)
CUMFLEX ALPFA (30 )4PHI(3L)y JHy)KF

2EAL NORMI157),X(1500,F (1504
DIMENSICN GI(134),CF(120)
DIMENSICN R(30),C130)

PI=‘¢.‘ATAN(1.0D
THWNPI=2.*Pl

NI=128

FNI=NI

4=FI/FNI

DU 21 J=1,NI
FREQ=TWCPI*(J=~1)/FNI

G (J)=FREGQ®*EXP {(-FREQ)

S CNTINUE

SF(1)=0.

00 & I=29NI
3F(I)=CF(I’1)0(5(1'1'*6(1))'H
S CATINUE

Aa=CF(ND)

00 5 I=1,NI
SFE(I)=CFII}/CFIND)
5{I)=2.*H

> CNTINUE

PRINT*,CF

XMI0=0.5

XRNG=1,

SCL=TWOPI/XRNG

CALL CcNTERLICF4CF NIy XMID)
CALL XSCALE (CFsCF,NIsSCL)
PRINT*,CF

1=10

L=1

CALL FOURSTI(CFyNIyRyCyMyL s G)
PRINT*,CF “

DC 3 J=2+M

L=y~-1
A{J)=CMPLXIRIL),C(LY) -

> ONTINUE
A(1)=CHPLX(THCPI 0.)
NP=128

FNF=NP

PRINT*,,A

00 13 I=1,NF

K {I)==PI¢+(1-1)*THOPI/FNF
NOQH(I)=(X(I»0FI)’EXP(°(X(Il*PI))’AA
(=0,

S CRTINUE

PRINT® 4yNORM

MR ——— N e et e g A PSRN D S e




25

2h

-
<

50

150
100

104

163
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NG 2 K=2+M
CALL AUTCREG(A,Kvﬂ'NF'ALpﬂAgPHLgJHyKH’CFQF)
IFIK.LT. 8 G0 Y0 2

ARITE (D460 (ALFHAli)91=1yK)gKH
FC&HAT(//,lX,%(2F8.4.3K})
IF(K-NL.& QANDOK.NEOQ) G0 10 2
DC 25 I=ioNF
F(I)=1./(F(I”THCPI’

5 CATINUE

PRINT®,F

00 24 I=14NF |
GlIl=G(I)+0.5'F(I)
S CNTINUE

\

5 OMNTINUE |

STOP
IND

SUGROUTINE FCURSTIlXQNsCPﬂIOSPPI;M!LvF)
DIMENSION X(N’gF(N),CFHI(l)'SPHI(1)
PI=lke*ATANIL, D)

2 L=FLOAT (L)

ML=M*L

30 53 J=1ML

CpﬂI(J)=SPHI(J)=00

5 CANTINUE

pC 100 I=1,N

IF(QES(XlI‘)oGT.FI) 5C 70 104
AX=X{I)/EL

€1=C0S (XX}

c0=2.%C1

c2=1.

$1=SIN(AX)

32"‘0. ’
3PRI(1)=CPHI‘1)4C1'F(I)
SPHI(1)=SPHI‘1)¥SI‘F(I)

1C 150 J=2ML
CPHI(J)=CPHI(J)#CSREC(C0101;32|'F(I)
SPHI(J)=SPH1(J’§CSREC(CO,SI'SZ)’F(I,
CONTINUE

CCNTINUE

3C T0 5
WRITE(b,103)
FORH0111H102X’2“H0ATQ
CONTINUE

RETURN

ZND

NOT $...LED PROPERLY

\
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NN=TABS(H)

0 9 I=tl,uN

YUIDX=XAUT) eXFT

RI TURN
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SUBFQUTINE XSSALZ(X,YsN,SZL)
DIMenSIZNHN Y (1)

DIYENSION X (1)

PTSCL=SCL )
NN=TABS(N)

DO 19 I=1,NN
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CHAPTER 2

ESTIMATING DENSITIES AND HAZARD FUNCTIONS




The kind of validation that we have completed in chapter 1 is
not sufficient for a method that is to be used in a statistical context.
We have to confront it with real data. This testing can best be done

by what was called before a second-hand validation.

Even though our main interest remains with the autoregressive
method, we will have to take a longer iook at the competing techniques
that we mentioned in our introduction, examining critically different
more or less inaccurate maps to vecognize the ground we are standing on.
We do not define with any more precision the -tasks that these methods
could be asked to perform. It will suffice for the moment to see how
they describe the data. This is admittedly an incomplete assessment

from which we shall not try to state definitive answers.

This critical examination will be done using a diversity of real
data situations: 2approximately normal data, zpproximately exponential
data and frequency data., But first we indicate how we have used the

different methods.




2.1 Choice of Input Parameters

2.1.1 The Kernel Method

The k..rnel method contains two input parameters, namely the

kernel function and the set {hj}?=1 of bandwidths.

W2 have used different kernels: Parzen kernel (Fig. 1, 2, 18, 30),
Gaussian kernel (Fig. 3), naive kernel (Fig. 4). It is clear that the
choice of a kernel is an important one. The Parzen or Gaussian kernels

will produce in general smoother estimators, -

We have always used constant bandwidths h, = h , even though

3

there are algorithms of the nearest neighbor :-ype to adapt the hj's to

each data point, following Loftsgaarden and Quesenberry (1965).

For tne particular kernels we used, the optimal value of h is
given by

1/5
p oade—tm [Eeay |
opt Z}n[f"(X) o J' yzK(y) dylz

1/5

=

£y 13 . | xeReEAC]
[2en012/° [

(Parzen (1962))
We have approximated this by

1/5
K » STDEV o (EE-BRE-&)




where STDEV 1is the standard deviation of the sample. The proportion-
ality constant K , if it is tooc large, yiel!ds very flat estimators, and
if too small, very spiky. A value around 2/3 has worked very well.
Note also that STDEV is very sensitive to outliers so that adjustments

may have to be made.

2.1,2 The Quantile Expansior Method.

The only parameter here is the order of approximation. So we

use the method iteratively, until we are satisfied.

2.1.3 The Spline Method.

We have usually fitted splines under tension to the empirical
quantile function. The input parameters include the temnsion factor, the

set cf knots {xi}§=1 and the end-point conditions.

The choice of the knot points is very delicate and crucial., We
usually started with 13 equidistant knots between 0 and 1 . Then
we moved them around and reduced their number according to the pictures
we were getting. This procedure is necessary when the estimated quan-

tile function startg to decrease, contrary to the theory,

When the tension facter is less than .001 , the spline under
tension is very much like the cubic spline; for values larger tham 50

*

it is a polygonal line.

The end-point corditions consist in this case of estimates of
the first derivative of the quantile function at both ends, usually

first diffarences.
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2.1.4 The Weighted Fourier Series Method.

The input parameters here are the empirical Fourier transform,

the weights and the order of approximation.

So again we use the method iteratively and estimate the optimal
weights by using the empirical Fourier transform Qn(o) . Thaler (1974)
has shown that for large v , @n(v) is not a good estimate of @(v)

in the sense that

= 1
lvl‘ifo Var cpn(v) = 3

But this should not cause us to worry as we usually need only small val-
ues of v , and we can check graphically (Fig. 9) that we are in a safe

part of the domain by finding the value v, at which ‘mh(v)‘z starts

0

oscillating around 1/n .

This procedure is simpler than Thaler®s own proposal and it also

performs better.

2.1.,5 The Autoregressive Method.

The autoregressive method has the same kind of parameters as

the weighted Fouriex series method, minus the weights.

The Fourier transform R(e) is estimated by Rn(O) from the
sample. Not only is the method used iteratively, but there is a recur-

sive algorithm to go from one order to the next (see appendix 3.A.1).
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2.2

Buffalo Snowfall Data

L

This set of data has been much studied in our department, more

from the time series point of view. It consists of the 63 yearly values

of snow nrecipitation, recorded to the nearest tenth of an inch, from

1910 to 1Y72. It was chosen to illustrate the response of the different

methods to approximately normal data (see Fig. Al and A2).

Table A

Buffalo Snowfall Data
Year 0 1 2 3 4 5 6 7 8 9
1910{ 126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25.0
1920 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6 80.7 60.3
1930] 79.0 74.4 49.6 54,7 71.8 49.1 103.9 51.6 82.4 83.6
1940} 77.8 79.3 89.6 85.5 58.0 120.7 110.5 65.4 39.9 40.1
1950} 88.7 71.4 83.0 55.9 89.9 84.8 105.2 113.7 124.7 114.5
1960} 115.6 102.4 101.4 89.8 71.5 70.9 98.3 55,5 66.1 78.4
19701 120.5 97.0 110.0
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2.2.1 The Kernel Method

We experiment first with different values of h . Figure 1
shows the effect of choosing h too large (h = 27.75) in comparison
with Figure 2 (h = 18.5) , where the kernel used is the Parzen karnel.
Now we can compare the Gaussian kernel with the Parzen kernel: with the
best choice of h , they yield the same estimate (Fig. 2 and 3). Thus
the Parzen kernel is equivalent to the Gaussian kernel. The naive
kernel yields spiky results even with the best choice of h (Figure &4).
However the same basic shape can be distinguished. Note that this
method does not impose any truncation on the data so that the tails

always go to zero.

2.2.2 The Quantile Expansion Method

In Figure 5, the peaks are much sharper and more separated than
in the previous pictures. It is at that order (order 8) that the three

modes appeared for the first time,

——— T
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2.2.3 The Spline Method

As in the previous case, the quantile function is smoothly

estimated and then differentiated to produce the density estimator.

The effect of increasing the tension factor tenfold is pictured
in Figure 6 (g = 1.5) and Figure 7 (3 = 15.) . In Figure 8 we show
the estimated quantile function that.produced the estimate in Figure 6.
It was based on 8 knot points located at 0., 0.06875, 0.25, 0.4,

0.625, 0.833, 0.916, 1.0 .

2.2.4 The Weighted Fourier Series Method

We determipe first the value 5 which is a kind of vupper

bound above which it would be "unsafe" to use the empirical characteris-
tic function to estimate ®(v) . Figure 9 is a plot of log10 ‘mh(v)‘z

vs. log.. v on a log-log scale. v, is such that [® (v) 2 oscil-
10 n

0

lates arouad 1/n for v> v Here n = 63 . Thus we draw a

0

horizontal line at 1/63 =2 0.016 to get that v>9 .

We notice in Figure 10 that the location of the modes has not
changed. The values of the two extreme wodes ¢ ‘e larger thanm in
Figure 2 because of the truncation, the data having been rescaled to

fill the interval [-m,m] completely. The truncation is responsible

too for the behavior at the left tail, which was also heavy in Figure 2.
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2.2.5 The Autoregressive Method.

We include several pictures to illustrate the different choices

we could make.

In the first four pictures (Fig. 11, 12, 13 and 14), the data
filled the interval {-m,nw] . These pictures have the same kind of
characteristics as Fig. 10 (e.g., the left tail). The number of modes

is a non-decreasing function of the order.

With the data filling only the central 2/3 of the interval
{-r,m] , the modes appear muchk more rapidly (Fig. 15, 16 and 17). The

tails are even, but the modes don't stand in the same relation.

What choice should we make?

Following one of our conclusions of chapter 1, we can look at the

output parameters.




- b2-

<€ o -

i
3 g
54 o
2 8
o o]
3 3
- s
< 5
H 3

-
@
] -
§ z S ——
D X R T L R N L
riom

Autoregressive method order 3 Order &
3 s
- a)
g %
b o
2 2
L ] .-.
3
o1 5‘1
&) ]
L ) .'4
z 2
* g
H] s
o 3
pd i
3 g
e TR T W X A 1. t.00 ®3.18 <228 183 _-8.280  0.80 180  R.ee

Order 5 Order 6

s a— - — ~




- 63 -

-
] .'-}
s s
-] -]
g) 3
- L
s 3
L ) o1
2 s
5 o]
2 s
'y <<
s 2
-] o
E‘ EJ
!‘ I8 L S.t0 68 1. 2. E.. A0 A8 _-0.38 438 1.8
. £i0.18 > : ric.a
Autoregressive method data rescaled Order &
to 66% of [-m,m] order 3
2
i
s
K
¥
2
2
-
<
2
3
z
.1
) ‘/~ . ] . N
.ll - e - -l o -
3.99 . ] 0 ’i‘o% .90 1.90 .90
Order 5




Table 2.1

Order

Table 2.2

Order

- b4 -

Some parameters of the Buffalo snowfall data deasity
autoregressive estimator (data rescaled to [-Tm,11]

Coefficients

~

N
(-0.2880,0.0792)
(-0.2943,0.0935)
(-0.3064,0.0905)
(-0.3094,0.1081)
(-0.3160,0.1118)

(-0.3221,0.0979)

(-0.4550,0.1386)

~

%2m

(0.0075,-0.0516)
(0.0546,-0.1084)
(0.0554,-0.1174)
(0.0487,-0.1422)

(0.0609,-0.1319)

(0.1570,-0.2222)

Scale Factor
A

K
m

0.9107
0.9082
0.8564
0.8517
0.8427

0.8242

0.6769

Some parameters of the Buffalo snowfall data density

autoregressive estimator
(data rescaled to

Coefficients

~

oy Y
(~0.5843,0.1321)

(-0.8359,0.2030)
(-1.1969,0.2016)

(-2.0489,0.2873)

~

On

(0.3813,-0.2178)
(1.0332,-0.3739)

(2.9781,-0.6858)

-5.5D

Scale Factor
~

™

0.6410
0.5174
0.3537

0.1011
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After order 4 in Table 2.1, the parameter %n decreases by
bigger jumps and the coefficients ajm vary more widely from one order

to the next.

In Table 2.2, the behavior is the same as in the similar situation
we encountered in chapter 1 (Table 1.2). The data did not fill enough

of the interval [-m,w] .

Figure 12 seems to be the best choice. To correct the left tail,
we could contract the data to 90% of [-1,1m] with minimal effect on the

modes.
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« 2.3 Maguaire Data

This set of data was studied by Maguire, Pearson and Wynn (1952).
It consists of "time intervals in days between explosicns in mires
involving more than ten men killed, from December 6, 1875 to May 29, 1951."
There are 109 data points and only 93 distinct values (see Table B and

Fig. Bl, B2).

The authors concluded: 'none of the tests described in this
paper demonstrates lack of homogeneity in the series of time intervals."
This set was also studfed by Boneva, Kendall and Stefanov (1971)

(see Fig. B3).

There were several reasons to consider this set of data, like the

possibility of an exponential underlying distribution and the effect of

the range.
Table B
Maguire Data
378 36 15 31 215 11 137 4 15 72
96 124 50 120 203 176 55 93 59 . 315
59 61 1 13 20 189 345 81 286 114
108 188 233 28 22 61 78 99 326 275
54 217 113 32 23 151 361 312 354 58
275 78 17 1205 644 467 871 48 123 457
498 49 131 182 255 195 224 566 390 12

228 271 208 517 1613 54 326 1312 348 745
217 120 275 20 66 291 4 369 338 336

{ 19 329 330 312 171 145 75 364 37 19
“ 156 47 129 1630 29 17 7 18 1357
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2.3.1 The Kernel Method

The extreme observations have so much effect on the standard
deviation of the sample that we can only obiain a very flat estimate of
the density using the Parzen kermel. But by omitting the nine largest
observations in the computation of the standard deviation, we obtain
Figure 18. Despite the "bias" towards normality exhibited by this
kernel (as noted in section 2Z.2.1), we recognize the very short left-

hand tail so typical of the exponential density.

2.3.2 The Quantile Expansion Method

It is not possible to get a non-decreasing estimate of the
quantile function, and this implies that one cannot form its functional

inverse which is necessary to get an estimate of the density.

When we consider only the 93 distinct data points, we get an
estimate (Figure 19) which is obviously biased, but nevertheless can be

useful in our comparisons.
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N 2.3.3 The Spline Method

The spline method proves equally difficult to use on the raw
data. Because of the difference of concentration of the data along the
real line and the necessity to pack all the data on a same graph, we
lose much of our power of resolution. The spline method is also tedious

to use as there is no systematic way of positioning the knots.

After many trials, we did not produce any satisfactory estimate

for mostly the same reason as in the quantile expansion method.

2.3.4 The Weighted Fourier Series Method

In Figure 20, we notice that the estimate produced by the
weighted Fourier series method has many bumps and is negative at many
points. But the two major bumps are located at about the same place as

in Figure 18,
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2.3.5 The Autoregressive Method

First we look at the raw data (Figur: 21). Notice the large
part of the domain where the estimate is essentially zero: this corres-
ponds to an interval that contains only five isolated points. The two
modes are at about S50 and 320 as in Figure 18. The coefficients in

Table 2.3 seem to indicate order 4 or 5 (Fig. 21 ov 22).

Table 2.3 Some parameters of the Maguire data density
autoregressive estimator

Oxder " Coefficients R ScaleﬂFactor
- Um %2m Ka
3 (0.7417,-0.7200) (-0.0927,-0.2868) 0.3120
4 (0.7149,-0.7027) (-0.0288,-0.3606) 0.2792
5 (0.6821,-0.8211) (-0.1105,-0.3999) 0.2391
6 (0.6805,-0.9146) (-0.2540,-0.4430) 0.2245
13 (1.2903,-2,1401) (-1.2134,-3,0118) 0.0152

In the exponential case, we have found that symmetrization yields
good results. In the real data case all we need to do to symmetrize is
to use the real part of the Fourier transform and evaluate the density
on [0,7] . We notice again that for the same order the symmetrized
estimate is smoother (Fig. 23 vs Fig. 22). This allows us to consider

higher orders (Fig. 25).
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Table 2.4 Some parameters of the Maguire data density
autoregressive estimator (symmetrized)

Order Coefficients ’ Scale Factor

n %m 02m Yn O5m n

5 -.7156 -.2775 .0539 -.0764 4251

6 -.7188 -.2753 0424 -.1061 4244

7 -,.,7200 -.2723 .0303 -.0982 4240

8 -.7128 -.2879 .0227 -.2039 .3973

9 ~.7826 -.2456 -.0340 -.1976 .3666
10 ~.8548 -.1290 -.1001 -.1463 .3419

We notice that the shape changes slowly (Fig. 23, 24, 25 and 26)
from one order to the next as the parameters remain very stable,
But from the big change in the parameters of orders 8 and 9, it would

seem that order 8 is indicated (Fig. 25).

We then proceed to the syuare-root transformati.n. The auto-
regressive estimates are much smoother than the one obtained from the
weighted Fourier serics method (Fig. 27-29 compared to Fig. 20). There
are no bumps in the right-hand tail, which is an improvement over
Figures 24-26. By iooking at Table 2.5, we can narrow our choice among
orders 2 to 5. The shape is pretty much the same, but the location of

the modes is moved around.
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Table 2.5 Some parameters of the Maguire data density autoregressive
estimator (square root transformacion)

Order Coefficients Scale Factor

™ Ui Ty Xn

1 (-0.0376,-0.5504) 0.6956
2 (-0.0751,-0.7748)  (-0.4011,0.0954) 0.5773
3 (-0.0758,-0.8066) (-0.4605,0.1050) 0.5733
4 (-0.0784,-0.8073)  (-0.4644,0.1214) 0.57.
5 (-0.0750,-0.8092) (-0.4743,0.1206) 0,.5662
7 (-0.1020,-0.8337)  (-0.4989,0.1606) 0.5361

Figures 21, 5 and 29 have their second mode at about 320 ,

like the kernel estimate in Figure 18 and the quantile estimate of

Figure 19,
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2.4 Bliss Data

This set of data is taken from Bliss (1967) Table 7.1 . It con-
sists of a 28-cell histogram for the lengths of survival in days of 1110
mice inoculated uniformly with malaria. This set was also used by

Boneva, Kendall and Stefanov (1971) (see Fig. Cl).

We use it here to compare the behavior of the different methods

vith respect to grouped data, i.e., when smoothing a histogram.

Table C
Bliss Data

Midpoint 4,5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5

Frequency 25 90 75 69 48 36 29 30 33 &4

Midpoint 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5

Frequency 29 40 51 51 71 65 78 75 48 30

Midpoint 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5

Frequency 35 17 15 13 4 6 2 1
t
! — - . I — A —— —
R _ o s
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Figure Cl
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2.4.1 The Kernel Method

The kernel method produces once again a smooth estimate (Fig. 30),
with two modes at 7 and 20 . The modes stand in inverse relation com-
pared to Figure C1. For the used h , there are less points contributing
to the estimation around the first mode than arouna the second. A smaller
value of h would give the proper relation, but it would aiso give

spurioug bumps.

2.4.2 The Quantile Expansion Method

The quantile method cannot be used with grouped data unless one
unravels the histogram by distributing the frequency count of a cell over
its width or by assigning to the midpoint a multiplicity equal to the

frequency count. Using the latter we obtain Figure 31.

2.4.3 The Spline Method

In Figure 32, there is an artificial mode at 4, outside the
observed range, created by the initial conditions that have to be imposed.
The mode at 7 is still present though obscured. By changing the first
derivative at the origin of the quantile function from 50 to 22, we
eliminate the artificial mode (Fig. 33) without effect on the second

mode,
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2.4.4 The Weighted Fourier Series Method

There is no difficulty to handle grouped data in the weighted
Fourier series method. But there is always the same problem with the

tails (Figure 34).

2.4.5 The Autoregressive Method

Not to include any zero cell at either end is equivalent to hav-
ing the data fill the interval [-m,77] . From Table 2.6 and the previous
pictures, the estimates of ocrder 2 and 3 seem reasonable (Fig. 35 and

36).

I1f we include a zero cell at each end, the Jdata points are con-
tracted to fill only 93% of ([-m,T] ; the pictures differ very slightly

(Fig. 37 and 38), except at the tails as expected.

Table 2.6 Some parameters of the Bliss data demsity
autoregressive estimator

Order Coefficients Scale Factor
n oy O R_
1 (-0.1437,-0.0767) 0.9734
2 (-0.1484,-0.1311) (-0.1316,0.3082) 0.8640
3 (-0.2170,-0.1535)  (-0.1314,0.3508) 0.5240
4 4-0.2482,-0.1578) (-0.0£32,0.3769) 0.8064
5 (-0.2629,-0.1641) (-0.0607,0.3927) 0.7967
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N 2.5 Hazard Estimation

The Maguire data set can also be studied from the point ci view
of hazard estimation. 1t is difficult to judge whether the estimates
produced by the autoregressive method are reasonable. But as there is a
one-to-one relationship between the hazard function and the density

function, we can make the comparison in terms of the density.

Our best estimate of the density was Figure 21 which gives the

hazard function on Figure 39, obtained by the indirect estimation

procedure
~ £ (%)
- m
h(z) = -
1-[ £ (w)du
0
Table 2.7 Some parameters of the Maguire data hazard function
autoregressive estimator
Order Coefficients Scale Factor
n Um %m Km
1 (0.4214,~0,2538) 3.5558
2 (0.4873,-0.3144) (0.0511,-0.1748) 3.4378
3 (0.5085,-0.3099) (0.1114,-0,2080) 3.3893
4 (0.4864,-0.3551} (0.0677,-0,2978) 2.7822
5 (0.4262,-0.4846) (-0.0282,-0 3139) 2.7696
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A look at Table 2.7 would leave the choice to be made among
orders 2, 3 and 4 (Fig. 40, 41 and 42). From these hazard est iates,

we can evaluate the density indirectly by
~ X
E(x) = h_(x) exp(- j‘o h_(u) du)

By this process, we obtain Figures 43, 44 and 45.

As Figure 42 is closest to Figure 39, so is Figure 45 to

Figure 21.

We note that the direct estimation of the hazard function is
difficult at the right-hand tail where it becomes infinite. Also, in
the indirect processes, we have to perform some numerical integration:
we used the trapezoidal rule which should be adequate as long as the

function we integrate does not have too mary sharp teeth.
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2.6 Estimating the Density via the Quantile Function

There is still another route open to estimate the density

function: via the quantile function,

We use the Fourier transform of the sample quantile function
Qn(t) to get the autoregressive estimate of order m of the sparsity

"~

A A
function, qm(t) . We integrate qm(t) to get Qm(t) .

Now using the relation given in (0.A.1.2), the density estimator

is

~ 1
£(Q(t)) = =
aqa (t)

‘m
We illustrate it only on the Maguire data, Figures 46 to 49.
The general shape is well preserved (compare with Fig. 21-22). Table 2.8

lists some of the parameters, Orders 2, 3 or 4 seem likely candidates.

Table 2.8 Some parameters of the Maguire data sparsity function
autoregressive estimator

Order Coefficients Scale Factor
n ;m . ;Zm ;ﬂn
1 (0.6615,0.2498) 814.9191
2 (0.3546,0.3447) (-0.4534,-0.0277) 646.7340
3 (0.2663,0.3703) (-0.3986,-0.1115) 620.2509
4 (0.2543,0.3741) (-0.3808,-0.1301) 617.8502
5 (0.2505,0.3790) (-0.3766,~0.1491) 611.7474

6 (0.2254,0,3736) (-0.3687,-0.1701) 571.0632
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3 2.7 Conclusions

1. Wa can produce with ease,using the autoregressive method, estimates
that compare favorably with those of the corpeting techniques, We never
get negative estimates as is possible with the quantile method, the

spline method or the weighted Fourier serios method.

2. The spline method can be very tedious to use when problems with the

knot points arise,

3. The kernel method performs very well, but the shape of the kermel

has an influence on the shape of the estimate,

4, In the autoregressive method, the data should £ill at least 907 of

the interval [-mr,m] .

5. Picking the best order is made easier by looking at the output
parameters. This is another advantage over the weighted Fourier series

A

method. The quantile method also produces output parameters, the A, 's ,

3

mentioned in our Introduction, Sillitto (1969) gives interpretation to

some of them.

6. A stricter rule to pick the best order of the autoregressive estima-

tor vould be preferable,

7. 1t seems that transformations of the data can improve the properties

of the autoregressive estimators, notably in the tails.

5 ) - — I e e e
R e R R S e
e e e ;




)

-92-

APPENDIX

2.A.1 Sample Programs for Estimation

We include in this appendix three sample programs, one for each

of the approaches we used.

Each program is divided in 3 parts:

-

- Computing the estimated R(¢) sequence
I1 - Solving the Yule-Walker equations iu AUTOREG (see appendix to
Cnapter 3).

111

Computing the estimate of the density.

15t program: Estimating the density of Maguivre data.

In Part I, we pecform the square-root transformation of the data
Y(e) and compute the estimated R(®) sequence in GCSPHI , stored in

A(*) . FREQ(*) contains the frequency of each data point.

In Part 11, we solve the Yule-Walker equations. F(*) contains

the estimated density of the square root.

In Part I1I, we transform back to the original scale.

Subroutine GCSPHI is equivalent to FOURSTI except that it
also computes the square modulus of the R(*) sequcrce stored in

PHI2 . This feature is not needed in the autoregressive method.

an program: Estimating the hazard of Maguire data.

In Part I, CF(e) contains the empirical c.d.f. and F(*)

&




:
i

- 93 -

contains the first difference of the estimated integrated hazard

n
n+1

log (1 - F_(*))

Part 11 is as before.

In Part 1II, we transform back from the hazard to the density.
3rd program: Estimating the quantile of Maguire data.

In Part I, FREQ(e) 1is the frequency of each data poiszt, CF(*)
{s the empirical distribution functicn. Then, FREQ(®) is modified to
become the first difference of the data Y(e) , i.e., the first differ-

ence of the empirical quantile function.
The two other parts are as before.

In these programs, we always rescale the data to ({-7,t] using

subroutines CENTER and XSCAIE .

e e a——
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FROGREN TINSZ(IWFLT NUTELT,,TAFZ5=INPUT, TAPS6=0UT2UT)

daliTHSIOHN FFTN(Q97)

QO”rL?X Q(L'),DLFHA(Z')ycHI(E;).JH,KH
JAMENSIUN S(i12),0(.M)
JIMENSICN X(1_¢2),F(1ne)
JIMEISTON Y1~

CIASNSION G(i~2)

Cl=L *ATAN(L..)

TR 1z24*F 1

M=7

M=vat

L=2

NI=93

N=NI

pEAD(bfi’:C) (Y(I),I’:—i"")
FURMAT(8F17 42 )

REDD(S,1.1) (FRENII)I=1,4M1)
FOSMAT(8Fis.2)

DO N I=1’NI

Y{.d=SCRT(Y(I))
FReQlI)=FFcCG(IV) /250,
CCNTINUE

XMID=0.5= (Y(1)+Y{NM))
XPNG=Y (N) =Y (1}
SCL=ThrEI/ZXRNG

ChLl TINTER(Y,Y  NyXMID)

CALL XSCALzlY,Y,N,SCL)

CALL LUSFHICYZNGRICHPHIZFREQ ,M,L)
RA{Li=CYPiLX{lesls)

00 15 J=2.M

A =CMFLX(R{J~1),Clu=-1]))
CONTINUE

K=101

FK=K

MP=K

LD 1 J=2,™

20 43 I'—".’K B
X{I)==01+({I-1)*TRCFI/FK
COMTINUE

CALL AUTCPZG (A, Uyt s KyALrFHA JPHI yJHyKHyX o F)

CALL XoChALZ(XyXy~K;SCL)
CALL CENTZmiIXyX 3=KXMIC)
Ak XSCALZU(F.F 4K,SCL)
Du ¢t I=1,MP
Foil)=C.5+F(I1/x (I
X{ad=XtIy=x(Iy

CCNTINUSE

1 fONTINUE

crn

\—\

-—

]

-

\

—
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L

SUzRIUTIME SUSPHINK G NG Prl 3 GPHT, FHI2ZFEI M, L)

JIMcPSION XtNYLCPHICLYI,SPHTItL)Y o FEIZ2 (1)
CUIFLEK FHIZ

PTEENSICH FREG(N)

DIz *ATaN(L.U)

IANFLCAT(N)

TL=FLGCAT (L)

ML=M L

0C &0 J=1i,ML

CFHI‘J)ZOO

SFrItJ) =0,

SCNTINUE

70 1iuf I=1,N

IF(A3SIXtITII}WOT.PI} GC TO 10«
XX=X{I)/EL

CL1=CQ3{xx}

Zh=2.%C1

C2=1§ .

S1=SIn{XK)

52=Co

oFHi{1d=CPHI{L)+CL*FREQ (1)
SERTIG1)=SPHI(LY ¢S1+FRESLD

[r{ML~1) 401,101,102

SCETINJE

DC .3y J=2.4L
SPFEIULI=CPHIt I +CSRECUMr G2 1,C21*FRENTYH
SFHI{JI=SPHI(JII*CIREL(CEHS1,S2)2*FREJ( T
SCNTINUE

SONTIHLE

S CSNTINUE

JC 200 J=1,ML

c=CPEICYY

S=SPFI L}

PHI2(J)=C*C+S+S

CCONTINUE

5C 10 5

WRITZE (0,10 3)

FURMATULANLyZX g 2L0HIATA NOT SCALEZD °20PEFLY)
CONTINJE )

K= TURN

:int

N AN ¥ SRR LT - TRt N s o




B

e

el

ir

- ¢ -

SUAPOUTINE CENTFEriX,Y, e ITD)
ATUINSTION Y1)

NPIMENSIGH x (L4

XET=x“I0

I:(f\lSToQ) XFT==x410

vz IABS(N)

0 9 I=Llynll

Y(I)=X{T)enfT

R THPYH

-
NI

SYFQUTIME XS.alZ (X, Yy NySIL)
IIMcBSISN Y1)

DIVENSION x (1)

PTSCL=SCL

IF(NLLT. ) PISCL=L./FISCL
NN=TABS{M)

02 17 I=14NN
Y(Ir=x (I *FISCL

SETUPN

M2
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#2067 AF TELSI(INFLT, uULiRUT ,T2RIS=TNPUT, TAPEG=0UTPUT)

JIVINSIGM FRZIr({gl)

COAPLTX MU20) yALFHI(?,) T nllcllydt,KH
SJIMINSICY FLLT),C (1)

DUMENSICH A(L.2),F(102)

SavINSION Y1)

JIMELS IO CFeL.u) Gt

PI=Le*ATAM (L.

TalPl=g,=F]

M=g

=1

MI=92
=Nl

RZED(S, 2700 (Y1) 4I=L,N)
FORMAT (BF17,")
READIS5,L71) (FRSQ(X),I=1,N])
FURMAT(8F1 ., )
TFLLI=FREC(LY 7112,
Fll)==8LNC {1 .~CF{11)
00 8 I=2,11
CF{LI=CF(i~-11+FREQCULIN /110
Fla)==ALCS{1.=CFlI))#ALCOlLa-0F({T-20)
CONTIMUE
XMID=L o5 LY (L) +YINYY
KZaGzY{N)-Y{2)
SCL=TWOP I/ XRNG
CALL CENTER(Y, Y N, XMIC)
oaltl XSChlLo(Y,yY,N,SCL)
Catt GCSCPI(Vvhyc,C1pHI,F1V)L)
A(i)=C”PuX(‘ALCG(10'CF‘hI‘)'F(l)gﬁo)
cn :S J:-'Z,?‘
Al =CHMPLX(R(J=-1),Cld~-t
CCrTIMUE
=170
FK=K
Mp =y
FNF=NE
HzFI/FrO
0N 1 Jz=2,.,WM
G013 I=l.X
X(I)z=eDT e (1= Y*THOF1/FX
CONTINUES

CALL BUTCREGIA, Sy KyALFHA PRI, JHyKHyX,F)

G(L)=F{1)*H

0C cu I=2,HF
GEId=uli=L)+F*(F(I=-1)¢F (IV)
CONTINMUE

wC 2% T=1,F
FODY=F (D) *-xC(=-5(1))
TOMTTUE

LrodvINUG

EMD

\

\




u?

1C1

17

- 98 -

OxUGRANM TENSCUINPLTZCUIPUT »TAPcE=TN2UTyTARPC6=0UTPUT)
SOMFLC X A{2C) JALFHA(PP )y Fr1(20u) « Hy4H
CIMEASTCM RE3IC)CLo)

JIMENSICH x(102),F(102)

DIMEPMSION YL283)FRZQI2CO)

JIMcMSICHN CFL130),6G(1CD)
PI=a,*ATAN(1.,0Y

FTwePI=24*P1

1=7

L=1

NI=€3

N=NI

FOFMAT(8FLu.0)

READ(5,101) (FREQ(I)yI=14N1)

FCRMAT (8F1G.0)

CF(1)=FReCG{1) /114,

STREQULI=Y L) ~
JO & I=2,NI |
CF(I)=CF (I-1) ¢FREG(I) /714G -~
FREGUIN=Y(I)=Y(I-1)

CORTINUE

XMIC=(CFIN)+CF(1))+0.%
XRM=CF(N)=-CF (1)}
SCL=TWAPI/XRNG

CALL CENTERICF CFyNTyX™IJ)
ChAcl XSCALE(CF,CF,NI,SCL)
CALL GCSPRI(CF NIsReCyFRIyFREG ¥ L)
DC i5 J=2sM
ALJ)=CMFLX(IR(J=1),C(U=-1))
SCNTINLE
ALL)=CMPLX(Y(N)=Y(1),0.)
FRINT*,A

<=1ii0

F K=K

NF=K

FNF=NF

\

0 1 J=2,M
IC 12 I=1,K . \
x(I)==-FI+»(1-1)*TRWOPI/F e
CCATINUC

catL AUTCC{EG‘A, JaMKy AL P A ’F’HI’J}QKH,X'F'
O INT®, ALFHA yKH

X (2=Yy(1)

S1=1./FL1) .

IV L& I=2,NF ’1/(1
X (I)=X(I=12 ¢F(I)*THOPI/ FNF e
FLIVY=te/F(LH
CCHTINUE

SCATINUE

o~

IND
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THEORETICAL RESULTS
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Before establishing the practicability of the autoregressive metlod,
we had briefly mentioned in the Introduction two possible interpretations
(namely an orthogona. polynomial interpretation and an autoregressive
covariance modeling) to give some insight as té why this method could be
used at all in the estimation of certair functions. We will now develop
these interpretations as they really open the way to the understanding

of the theoretical properties of the method,

Typically the statistical evaluation of an estimation procedure is
the study of its convergence properties. This can be done quite often
in two parts: first the deterministic part or study of the bias,

second the stochastic part.

Paralleling Part I, we will first answer questions about the bias,
that is: How good is the autcregressive method as an approximation
method? Then we will consider the consistancy problem so as to complete

the picture of the autoregressive method as an estimation method.

In the process we will try to resolve the unanswered questions with
which we concluded Part I:
— What is the best route to estimate a function?
~— Should we transform the data?
-— In the case of a density function, should we proceed
directly or via the quantile function, or via the
hazard function?
— How does averaging successive orders help to reduce the bias?
— Can we explain the "odd-even" phenomenon?

— Why does symmetrizing work better in near exponential situations?
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Note on our numbering system

Let a stand for a chapter,
b for a section of a chapter,
x for a subsection within a section,

y 1for the rank of an equatior. in a subsection.

All equations will be numbered (x-y).

For reference purposes, we will use (x-y) when the reference
appears within the same sectioa (a-b) as the equation. Otherwise, we

will use the complete identification (a-b-x-y).

= R i S e
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CHAPTER 3

INTERPRETATIONS
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3.1 Time series interpretation

f‘ « 3.1.1 Moving average process
Let % be the set of all integers. Let {Y(t),teZ} be a
complex-valued stationary time series with covariance function

RY(V) = E[Y(t) o Y(t + V)] .

We say that Y(e.) 1is a moving average process if there exists

an orthogonal process {e(t),tc2} with

Efe(t)] = 0

R,(v) = Ele(t) « SEF W1 = 028, , 02>0

Pl

(where 6v o 1s the Rronecker delta function)
?

such that
(1.1) Y(t) = % eke(t - k) .
k= -o

Define the lag operator L by -
Lje(t) = ¢(t - J)

then, (1.1) can be rewritten as

4

Y(t) = h(L) €(t)

(1.2) . -
where h(L) = % Bk 'Lk
{ k= -
i
' T T TR .
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- In other words we say that Y(t) is the output of a filter h(L)

with input €(t) . Moreover, we have that

Ry(v) = I (s) R (s - v)
s= Rh €
(1.3) W

L where Rh(s) = ka Bk Bstk -

Thus,

2 ©
(1.4) Ry = 0. T BBy -

In view of the convolution formula (1.3), it is useful to consider

in turn the Fourier transform of RY(.), fY(.) , defined by

(1.5) £~ T e TRV

v= -o

We can write it automatically as

4
fY(x) = fh(x) . fe(x)
- ~ivx ix, 2
(1.6) < where fh(x) ~ ¥ e Rh(v} ~ ‘h(e )‘
V= ~©
@ 0'2
L E0) = Do RM =& .
VR -@

Thus,

= TIPSR - T e s b b S e




2
g .2
(1.7) £,(6) = 5& |n(e'™))

We also have (if FY(-) is absolutely continuous)

u ivx u ivx
(1.8) R (V) = J:ﬂe dFy (x) = {ne £ (x) dx .

Because of (1.8), we call fY(-) the spectral density of the
« .
) Bk e"ka is called the transfer function

k=~

of the filter h(L) , as it is the link between the time domain represen-

process Y(e) ; h(eix) ~

tation (1.2) and the frequency domain representation (1.7).

It is time that we worry a little about the meaning of all those

infinite operations we have been performing.

The process Y(.) has finite variance if and only if
-~}

% |ak‘2 < o , and then (1.1) is defined in mean square. If
k= ~»

) ‘Bk‘ < = , then

k= -

T [{o| < [k}_mnek\]z < =

and (1.5) will converge pointwise, a.e.

© @ 2
pM ‘Bk‘ < o implies > ‘ak‘ < @ ,
k= - k= ~o
-]
it turns out that I !3k| < o 1is a sufficient condition for all our
k= -

operations to be valid,

- - o — —
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We will say that Y(s) has a moving average representation in
terms of the past if B = 0 for all k<0 in (1.1). We will say
that Y(s) has a moving average representation of order q if in addi-
tion Bk = 0 for k>q and Bq 75 0 in (1.1); usually we normalize by

BO = 1 and use the notation

q
(1.9) Y(t) = e(t) + % que(t - k)
k=1

3.1,2 Autoregressive process
Let {Y(t),tc2] be a complex-valued stationary time series with

covariance function &{(.) .

We say that Y(e.) is an autoregressive process if thers exists a

filter gL) and an crthogonal process {7(t),teZ}

EIN()] = 0, Ryw) = El(e) AE # w1 = 638, o , 2>0

n
such that
(2.1) () = E(lﬁn(c)
where
gm=ji%ﬁ, A

TR R e s At s LIS ELA LT o R
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We usually write the equivalent formula

w

(2.2) Y(t) + T «

I oyt - D = n()
J=

Note that the filter g(L) does not allow the Y(e.) process to depend
oun its future, but it is conceivable that h(L) = 1/g(L) would allow the
future of the M(.) process to enter in (2.1). We will guard against
that by asking that the roots of g(z), @:31}, be all outside the unit

circle. Then,

(2.3) h(L) = (11‘) = — 1 - ( 5 (er)“)
m(l-r.n) ITHED
= 3

which provides a moving average representation in terms of the nast,

Tt is difficult to express RY(.) in terms of the filter h(L)
as in (1.4), but if we post-multiply both sides of equation (2.2) by
Y(t - k) , k=1,2,3,..,, and take expectation of both sides, we obtain

the fcllowing linear relations

—

_ R
RO RAW R@ ...flgy| R
- R RO RiD -] o] R
' R(-2) R(D RO ... |la]  IR(-3)

. . .
3 . -

A et S _anad —

which are called the Yule-Walker equations. When we post-multiply by

Y(t) and take expectation we obtain
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@© ) _ 2 N
(2.5) Z o NG = o 5 = 1

In establishing these fornuwulas we make use of the fact that

Y(«) has a moving average representation in terms of the past, which

implies that

E[M(t) Y(t - k)] = O for k>0, all t

(2.6) ¢

E[M() Y(E)] = c%

The matrix on the left of (2.4) is an infinite Toeplitz

matrix.

Finally, as in the previous section, the spectral density is

2
Q.

.o 1

(2.7) (&) =& ix. 2

lge )]
We say that Y(e)

is an autoregressive process of crdar p if

aj =0 for j>p and up # 0 in (2.2). 1In this case we prefer to use

the following notation:

P
(2.8) Y(t) + Z

A ij(t - 3) = ()

The coefficients now satisfy a finite system of Yule-Walker equations




L P

RO ... RG] o | [RCD)

@9 { |Ra-e RO Tl AP

5 () 2
c = 0O
§=0 ijY n

More precisely, the covariance function R‘I(') obeys the follow-

ing difference relation

P
2.10 a - v) = <R, (~v for all v>0 .
@10 B el s R
It is clear that in the finite order case there is no problem in
any of the operations except maybe in (2.9). But there, if Y(s) 1is
stationary, the covariance function &I(.) is strictly positive definite
and thus the determinant of the finite Toeplitz matrix in (2.9) is greater

than zero (see Pagano (1973) for the real rcase). The infinite order case

is treated as the limit of the finite order cases.

€0
In the following, we shall impose that T }'xj‘z <o to insure
] 3=1

that fyl(o) is integrable as

2 ® 7
4r 2 dx
Ri) = -+ zleld =] S
2 jﬂll 3! '[n £y(x)

O-n

where we anticipate (3.2) and Table 3.1.
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3.1.3 Relatjons between moving average and autoregressive processes
If we compare (2.7) with (1.7), we sea that the spectral densi-
ties of autoregressive and moving average processes are almost inverse

of each other., Let

4

2
fo] .
" = & ix,,2
fa®) = 7m (h(e)]
(3.1) <
c2
! S S
£ m ix, 2
|8Ce™)|
\
Then f-l(o) is the spectral demsity of a moving average process having

AR

filter g(L) and with UZ = tng;f

. Similarly, f&i(.) is the spectral
density of an autoregressive process having filter h(L) and with
c% = 4“20;2 .

To any spectral density we associate a new function fi(e) = f-l(.),
the inv rse spectral density (we require f-l(.) to be integrable, so it
can play the role of a spectral density), and Ri(e.) the covinverse func-
tion (or inverse covariance function) related to fi(.) by

v

(3.2) Ri(v) = [ eMFfi(x)dax .
-

We can build the following table of relatioms:

s - Fa oL o e e ssiee e 5

i e U
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3.1.4 General representation of a time series
Let {Y(t),te2] be a complex-valued stationacy time series
with spectral density f£(s) and covariance function R(e) ,
T

REv) = [ e g(x) ax
-17

Then there exists an orthogonal process {e(t),te®} such that

rY(t:) = % ske(t - k)

k= -

(4.1) y

« ~
where z ‘Bkr <o ,
k= -o

.

and f(e.) can be represented as

[- -]
ikx, 2
| T ge |
(4.2) Fx) = cf: k"“zn , where £(x) < ® . |

f log f(s) 1is Lebesgue-integcable (which requires at least
that f(s) be positive and finite almost everywhere on [-T7,77] ), we
have that By = 0 for all k<0, i.e. Y{e) has a moving average

representation in terms of the past and £(.) is representable by

- ikx, 2
2 ‘REO B
(4.3) "f'(x) = oe o , where 0 £ f(x) < = .

(Doob (1953), p. 577)
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On the other hand, there exists a process Y’(.) having covari-

ance function Ri(e) and spectral density fi(e) = f—l(.) with

17
Ri{(v) = I eivx fi(x) dx .,
-

Thus there exists an orthogonal process {¢€ ‘(t),te?} such that

(Y (t) = X o.je'(t -
§= -
(4.4) ¢ ©
where ) ‘c_j‘z < ®
- j=.w

and fi(e) can be represented as

2 |z ajeijx‘z
(4.5) i) = o, — , where fi(x) < =

As log fi(e) = -log f(e) , we have that a.j = 0 for all

j<0 if 1log f(e) 1is Lebesgue-integrable, and then fi(e) 1is
representable by

ijx 2

‘

L a.e
X3
ZT ]

(4.6) T = o, -

where 0 < fi(x) < o .

By comparing (4.3) with (4.6), we conclude that if 1log £(e)
is Lebesgue-integrable, f(e) can be represented almost everywhere by

either of two forms: — as ¢ moving average spectral density




(4.7)

(4.8)

3.1.5

(5.1)

-ty -

|z Bkeikxlz
B = of X0 ; E\sk\z <e
€ k=0

~ as an autoregressive spectral density

2 ©
Fx) = O 1 L Dlell <o .
021 2 iix 2 j=0 J
(] Zﬂ'.]zaje ‘
j=0

Time series interpretation of the autoregressive method

We start with a function R(e) that is

strictly positive definite

and such that

(5.2)

{-11,17]

o = i g p————
<

R(-v) = R(v)

It is well-kncwn that such a function is a covariance function,

Then we assume that there exists a function f(e) defined on

such that

17
R(v) = ‘r eivxf(x) dx
-

e e e bt
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Furthermore, we assume the existence of a hypothetical complex-
valued stationary time series Y(o) whose covariance fiunction is R{(e)
and spectral density f£(e.). It is always possible to construct a
Gaussian time series having zero mean and covariance function determined

by R(.) .

Assuming that

TT
(5.3) -o <[ log £(x) dx < and [
-0 -

we seek the autoregressive representation of £(.), 'f.:"(.)

(N 0",2, 1 ©
f(x) = . » Tl < e
2 @ 2 L
| T °‘j elel =
(5.4) . =0

where 0‘5 = ¥ aj R(3) , according to (2.5)
=0

\ 3

Now we know from subsection 3.1.2 that the a's and the func-
tion R(e) are related via the Yule-Walker equations (2.4). But that
system is infinite; so we consider successive approximation by finite

orders as in (2.9)

) EE 1
fp(x) - 2 > —y:
|1 + 3 a.j e ‘
(5.5) . j=1 P
P
Kp = jan.jpk(j) . aop =1
\




in the hope tnat

(5.6) lim fp(x) = F(x)

P2 w

This is the question we will consider.

T ——
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3.2 Orthogonal polynomial interpretation

3.2.1 Theory of orthogonal polynomials on the unit circle
Let F(e) be a nondecreasing bounded function with infinitely
many points of increase, defined on [-m,m1] . W< denote by Ll_z, the

space of measurable complex-valued functions g(es) such that
'
I ™2 e < =
-

It is well known that L}z, with the following imner product

Ul ix ix
(u(-),V(-))F = f u(e™) v(e ) dF(x) ,
-

u(e) and v(e) 9L§

is a Hilbert space.

2 n

If we orthogonalize in 12 secesZ 3ee-l,

F
we obtain a set of polynomials {cpo(.),cpl(.),qnz(.),...,(pn(o),...} that

the set of powers {1,Z,Z

are uniquely determined by the conditions that

n .

= n=J
(1.1) Con(Z) janjuz , ag, > 0, for all n
(1.2) (Q)j(.),cpk(o))l_, = 6jk’ for all j and k .

In order to construct the polynomial c;n(.) , we define the

(_ characteristic sequence R(s) by

T T A A sers s L TR A T =




-

-{i8-

m .
R(v) = ‘f elvxdF(x) s
-7

Note that R(-v) = R(v)

for Cpn(.) by

=17

(1.3) \

L(tpn(') ,@n(d)l,- = 1

which we rewrite as

(1.4) <

The normal equations (1.2) can be replaced

(17 .
{ Cpn(eix) et ®ar)y =0, j§=0,1,...,n-1

s j=0,1,...,n~-1

In matrix form this system is equivalent to

[R(0) R(1) s

(1.5) R(-n+1) R(-n+2) ...

R{(-n) R(~n+1) ...

|

In view of the multiplicative effect a

On

—_ o
R)] [a, an:l 0
R(D| [agg » 21, 0
R(O) aon. -:0 1

has on the cce ficients in

(1.5), we can reduce the system by setting g, = 1 and then recover

the true value of A via the normalization G{)n(.),cpn(.))F =1,

as follows:
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T - % - ‘—
R(0) R(1) «vs R(n-1) a . iR(n,!
R(-n+2) R(-n+3) ... R(1) ay =-R(2)!
*
(1.6) ) R(-n+1) R(-n+2) ... R() an R(];)J
e = — -
I ‘einx + % a* el(n-j) xlh drF (x)
-1 j:l jn
\
Thus @ (2) = aOn(z“ +a’1"n 22l s a:n) . a >0 .

Consider now the subspace, of L:', , generated by
2
@)0(.)@1(.)’,“’@;11(.)) and denoted by Ln .

Lﬁ is a reproducing kernel Hilbert space, that is there exists

a function Kn(.,.) of two complex variables such that

2
Kn(o ,Y) € Ln

(1.7
n
R (s,y) = jEijn(Y) @, (e)
(1.8) (s(-),Kn(-.y))F = &gy , for all g3(e) e:I-fl .

We can obtain an explicit representation for l(n(.,y) by solving the

followir.g normal equations:

-~ ——




Mb\

(1.9) (coj(-),xn<.,y))F = om §=0,1,...,n

to yield that

n
(1.10) (e;9) = T @.(y) 90.(e) .
“n j=0 3 J

At the same time, we have verified the reproducing property (1.8)

because any g(e) eLﬁ can be written as

n
g(e) = on g5 ij(-)

It is clear also that K,(»,¥) is a polynomial of degree

n

(for fixed y ). So we may seek its equivalent polynomial representa-

tion

n A
(1.11) Ko(Z,y) = T a 2z .
=0

Let h(2) = 2}, §=0,1,...,n . Then, by (1.8),

Gj(.)’xn(.’}'))? = hj(Y) = yj ] j=0:1’°°"n

This can be rewritten as

SR — L o ha i =




(1.12)

n

j=1,...,n

z

L aLn(y) R(j = 'L)

n
Z 3, (y) R(-41)
10 °

In particular if we set y =0

(1.13)

f

L

we get the following system

n
T aLn(O) R(j - 1) 0 j=1,...,n

14=0

)2

a, (0) R(-4) = 1
tg 0

This system is

{
equivalent to (1.4) with the followirg identification:

(1.13) Q.4)
j < > n-j
8Ln(o) < > %n * %n
n -
Thus while @ (Z) = 3 a z" J , we have that
n =0 jn
) T3
(1.14) Kn(Z,O) = aonjgoajnz ,
2 n 2 n 2
1.1 0,0) = = . = . .
A1) KO0 = gy = TRO = T ey
Let C;):(Z) = K (z,0)/a, , then
K (0,0)
x %* o} -
(v (1.16) (Con(°),f9n(°))F = ——"a?_ 1
On




LT
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3.2.2 Some interesting properties

A - Extremal properties
The polynomials q:n(z) and Kn(Z,O) are also related through

a minimum norm approximation problem. Suppose we want to find the best
n-1

approximation to Z" in the space erx—l y L cj ZJ » such that
j=0
n-1 7
n * 312 ijx, 2 . .
fz"- 3 ch “F = J‘ | E cje | dF(x) is a minimum.

We know that our answer will be the projection of Z® on L2

n-1 °
n n-1 .3
Let g*(Z) =2 -3 c.Z . We certairly have that
n i=0 1
g*(Z) ¥ 3 C:J (2) , and moreover we know that B = —— , for the
a
j=0 1114

coefficient of 2" is equal to 1 . It follows that

L& 2 n 2 2 1
lg"olle = = i8;1° = 18" = 5 -
j=0 a,

®,(D ®,(2)

a attains this lower bound. Thus, -
On * On

requirements for g (Z) and is our answer. 3o

But satisfies all the

& = Jlm
n-J aOn
n 1
1£ f j \ dF(x) 1is a minimum, the same can

be said of the equ1valent form




3
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or
T n-l— . . 2
T S P 1)
-1 j=0 1
Now,
n-l_; n-j n EJB. i Kn(Z,O)
1 - % ct2 = 1+ Z 3 Z % (0.0) .
j=0 1 j=1 On n( »0)
n ¢;(Z) n 2
In other words, 2~ - a is the projection of Z  on L -1
K (Z,0) On ,
and 1 - =—+—=7 1is the projection of 1 on the subspace of L
Kh(0,0) n
generated by {z,...,2"} ; L _ s the squared distance between

K,(0,0)
n

Z~ and its projection on Ln-l .
B - Recurrence relations
Let H be a Hilbert space with inner product denoted by

(f,g)H , for f,g in H . We denote by f(-‘g) the projection of f£
on the subspace of H generated by g . By analogy with regression
theory, we extend the notion of partial correlation coefficient to the
context of a general Hilbert space: for any elements f’g’fl""’fn

in H , the generalized partial correlation coefficient between f and

f is defined as

g , given fl""’ a

R A N LT IO TR
LR U EColE )y n £ o llg - gCe| £5ee o, £

(2.1)

where Hh“H = (h,h)z is the ncrm of h in H .
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Then, for any f, g and h in H , we have that
(2.2) £(s|8,h) = £(.]h) + f(.]g - 8(s|h)) .

To prove this, it is sufficient to note that h and g - g(.‘h) gen-~
erate the same subspace as g and h , as they form a basis for that

subspace.

We mzke two applications of the identity (2.2) to the case of

our Hilbert space 2 . Wwe represent z® by £ , for n=0,1,2,...
n

The first application is

(2.3) £ (o|fgoeenf ) = E G e s B D HE (o] £y = £0C £ Lo € 1))

which translates into

n %@ L 2o @ K (2,0 i
(2.4) 2 - a = Z - p — + Q E—-*za—aj , n=12__ .
On 0,n-1 n-1"""2

wnere @ = is found by equating the constant term on both sides

30n
of (2.4).

The second is

(2.5)  Ego]€,eeesf) = £oCo|Epyeens B () +EGC|E = E (o] Ep,eeesE 1))

which translates into

e s - . TN e AL o (. S

’e&‘




K (Z,0) K ,(Z,0) AN ¢4
’ -1 n-1
(2.6) 1 -2 = 1 - By g2 n=1,2,..,
Kh(0,0) Ln_l(0,0) ao’n_1
where B8 = “a is found by equating the cc -ficient of 2Z on both
On

sides of (2.6).

Thus,

®(2) 2% (Z) a_ K_ (2,0

(2.7) = + =
%on aO,n-l %0n Kn-l(o’o)
and
2.8) Kh(Z,O) ] Kh_l(Z,O) .\ a ZG%’I(Z)
Kn(0,0) Kh_l(0,0) a0 aO,n-l
Moreover, we can give the following interpretation to the
a
coefficient —=
a
On
——— _( 3 -
- (Fgrf )/ (£-E)y » B =1
(2'9) ;— = L]
Cn

~r(£q £ | £1seenf 1) > B =2,3,...

We use the relation (2.5) in the modified form
(2.10) f0(°‘f1""’fn) = f0(°‘f1""’fn—1) + B[fn- ﬁn(.|f1,...,fn_1)]

together with the basic property of the projecticn

(2.11) (fo,fn)H = (fo(.\fl,...,fn), fn)H

e . - eeeiemm——— -




Ly )
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to obtain that

(5= £l Eysmesf ) £y
(£ ~E (e[E,---,E _1)s EDy

(2.12) 8

The second element fn in each inner product can be replaced by

fn - fn("fl”"’fn-l) and finally it can be verified directly that

ey - Eqlolfyseeen by Oy = Mg - £ CGE,f DI,

thus completing the proof of (2.9).

1 appendix 3.A.1, we use (2.8) and (2.12) to obtain a recur-

sive algorithm for the computation of Kh(Z,O) .

C - Asymptotic properties

Theorem 3.1:

17 KR(O,O)

T
KX gy < f eikxdF(x) , k=0,%1,...,%n

1
Fis >
-1 an(eix,O); -

Proof: See Geronimus (1961), p. 12.

In what sense i. this result useful to us?

We know from real analysi: r“at any monotone function F(.) can

be written as a sum

F(o) = Fac(o) + Fs(o)
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where — Fac(-) is absolutely continuous with respect to Lebesgue

measure

- Fs(o) is the sum of a step~function with a singular function

Let f(s) be the derivative of the absolutely continuous part of F(s).

In general, Theorem 1 means that F(x) and
x Kp(0,0)
dd have the same first (p + 1) elements in their
i@
-17 ]Kp(e ,0)‘

characteristic sequence. In the case F(.) 1is absolutely comtinuous,

the Fourier series of the difference

Kb(0,0)
f(x) - — ~
2n ix 2
K (e™,0
[k (¢™,0)]
is of the form
T b e-ikx .

lK>p ©

Now, what happens in the limit as p -» o ? We have the follow-

ing theorems that we take again from Geronimus (1961), except

that the notation is changed.

Theorem 3.2:

0 < 1 K (0,00 = 3 |mj(0)\2 = K(0,0) <=
Pow i=0

if and only if log f(e) 1is Lebesgue-integrable, that is if and only

T
T if f log f(x) dx > ~= .,

-

T e B Aot T PR R L 9




S
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Proof: See Geronimus (1961), p. l4-17.
Theorem 3.3:

K (2,0) 1

mz) = lin S——= = lim &}(2)* T 9.0 92 , |2} <1
P-’w\/Kp(0,0) Pow P \/K(O.O)j=0 j j ! ‘

if and only if log f£(e) 1is Lebesgue-integrable. The convergence is

uniform in any closed region ]Z‘ sr<l .

Proof: See Geronimus (1961), Chapter II.
Theorem 3.4:

1 1

= lim TR exists almost everywhere
me™) r->1 m(re ) in [-m,m] .
Also,
f(x) = Lo 1 a.e., in [-m,m]
n ix,, 2 °? T ? -
(™)

Finally, let E = {xe[-m,m], 0 < f(x) < o} and define

ne™) , xeE
T(x) = .
[ 0 , X¢E

Then, TTE(x) has the following ex,ansicn in terms of the orthogonal

N IIEIRE TS, . e T s o
i e B
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. ©
polynomials {¢h(')}n=0 )

1 2 — ix
WE(X)vm jgo CQJ(O) mj(e ) )

which converges in L;

Proof:

then,

See Geronimus (1961), Chapter II.

Theorem 3.5:

Let

K (0,00
8, = limg(e) - = o (ol

VX(0,0)

2
§ = 1 0
p JK(0,0) jsgil‘qﬁ( )‘

and 1lim & =0 .,
Paw

(..
: i . i 5 of I
Proof: The expansion of nﬁ( ) in temms {¢h( )}n=0 is, from

Theorem 3.4.

"E(x)"'-x—(,/_ol——ﬁi j§0 ij(O) <Pj(eix)

%*
The expansion of wp(-) is
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[
y ™Mo

ix
C{Jj(O) toj(e )

jx (0,0)

1 P ix
r————-—K(o 5 CO ( r—_——__——K(O,O)jEQ ij(O) cpj(e )

as
op p ] )

Now by Plancherel's theorem

./E (0,0) P o .
) - ! * 1x ix - ix
limrg (+) —L_x(o = @ ( Mg=h K(O 0)k .(0) HC j*i:omj(O) P, (e ))HF

So,

1
5 = r. ®, (0)
P ,/K(O,oj |1‘ ‘
And, by Theorem 3.2

1im & =0 .
PO P

Theorem 3.6:

1f F(e) is absolutely continuous in [-m,TT] ,

0O<ns$ f(x) <M, a.e., in ([-m,m] and f£(+) € Lip(1/2,2) , then
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]¢§(Z); < C R 2y s 1

Proof: See Geronimus (1961), Chapter III, Theorem 3.8.

Note: f(e) € Lip (a,p) 1if
1/p
w_(5:£) sup JT1£Ge+n) - £0)|P ax =008%) .
P ‘h¥<6 -

We get the same result as Theorem 3.6 if

otv

Ty
R(v) = [ e f(x) dx
-

Theorem 3.7:
i
. ’1
1 F ) - = —_—
i [ logFx)ax > -, b o\p)

- 2 - -
and F(xz) F(xl) m(x2 xl) , for m>0 and -mv = x1<x2$'n’

. i ,
then 1lim @ (') = w(e™™) , a.e., in [-w,7] .
P~

Proof: See Geronimus (1961), Chapter V, Theorem 5.1 .

In the case F(eo) 1is absolutely continuous and £f(e) is
bounded above and below, it is sufficient to have wz(b;f) = odg) . 1f

wz(b;f) = 0(6“) , @>%  then the convergence is uniform (Geronimus

(1961), Theorem 5.2).

- w_' ' i ——— e
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We can reformulate the assumptions of some of these theorems

in terms of the sequence of partial correlation coefficients ﬁznn} by

noting the following results:

Theorem 3.8:

The condition ‘ahn“< 1, for n=1,2,,.,., determines the

entire set of orthogonal polynomials {Gh(o)}:=o up to a multiplicative

constant (qb(o) = 1) and thus determines a function F(s) , bounded

nondecreasing with infinitely many points of increase.

Proof:

Proof:

all x

Proof:

See Geronimus (1961), Chapter VIII, Theorem 8.1.

Theorem 3.9:

log f(e) is Lebesgue-integrable if and only if T ‘c'nrlz <o .
n=]1 -

See Gerenimus (1961), Chapter VIII, Theorem &.2.

Theorem 3.10:

-3
n log n

where £(x) > 0

1f ann\-< , for n large enough, we have that at

lim @ (%) = me!® .

pow

See Geronimus (1961), Chapter VIII, Theorem 8.4.

. e




Theorem 3.11:

If ja | <1 for all n , then
nn

P
19, (2)] < 2, exp(jz;:l‘ajj\) , jz) = 1

Proof: See Geronimus (1961), Chapter VIII, Theorem 8.3,

There does not seem to be any condition on the f{a 1 that
would yield the equivalent of Theorem 3.6. Indeed, we have the follow-

= ing:

Theorem 3.12:
[--}

If 3 ‘ann‘ <o  then
n=]
‘cpp(z)| < Cc, for |Z] <1, and all p
F(e) 1is absolutely continuous in° [-m,m] ,
f(x) 2 m > 0 ,
f(e) 1is continuous and
* (-]
‘CPP(Z) -ﬂ(Z)‘ < C" . jgp‘ﬂ.jj‘ R ‘Z‘ <1

Proof: The first assertion is a direct consequence of Theorem 3,11,

(» For the other assertions, see Geronimus (1961), Chapter VIII, Theorem 8.5.

m b et as s gt B WA
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@
So, at the same time as the boundedness of @3n(.)}n=o and

* % .
ﬂan(.):‘o , we get the convergence of ¢$(eix) to ﬁ(elx) . This is

equivalent to the combination of Theorems 3.6 and 3.7 with uniform

convergence.




3.2.3 Orthogonal polynomial interpretation of the autoregressive

method

1f we want to approximate the derivative f£(s) of a bounded
nondecreasing finction F(.) , we form the characteristic sequence
u ivx
R(v) = I e dF(x) , v=20,1,...,n
-
from which we obtain the orthogonmal »olynowials {¢b(’)’°1(')’°"’“h(‘)}

and the related kernei functions {Kd”o)’K1(°’o)"“’Kn(°’0)} .

Under the assumption that 1leg f(e) is Lebesgue-integrable, we

have that

K _(0,0)
= L P’
fp(x) 5

]Kp(eix,O)\z

is an approximator of £(x) .

In the next chapter, we give more precision to that

affirmation,

The estimation problem would be similar save for the estimation
of the R(es) sequence usually through the use of a crude estimator of

F(e)
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3.3 Correspondences between the two interpretations

The autoregressive approximator of order p

K

(0.1) fgl)(x) - -2, 1

21 P 2
ijx
‘l + .Elajpe |

and the approximator of order p we obtain from the orthogonal poly-

nomial theory

K _(0,0) >
\Kp(e 00| la 2'3—-eijx2
Opj=0 ir ‘

are equal,.

Indeed in the time series case, the parameters szp}§=1 and

Kp are related by the following equations

’

p

E a. R(j = ‘L) = 'R("L) ’ L= 1,---,P
j"l Jp

(0.3) <

P
I ot - 5

\

(see equation 3.1.2,9)

In the orthogonal polynomial case, we can rewrite the system

(3.2.1.13) as
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[

|
‘Es'ajp R(j - &) = —aOP R(-1)
j
0.4) ¢
p - -
aOPjEGajP R(j) = 1
\

The following identifications provide the equivalence of the

two systems:

r“op = 1
—
(0.5) ¢ %4p ° 5‘12
Op
_ 1 _ -1
l K, = 2 X _(0,0)
op P

It follows that all the properties that were established in
subsection 3.2.2 have 2 time series interpretation. We note first that
from the definition of R(e) in both interpretations, we can mzke the
identification of Y(t - v) with z . Then, from subsection 3.2.2
part A, the best (minimum mean-square error) linear predictor of Y(t - p)

given Y(t - p +1),...,Y(t) , denoted by Y(t - p‘t -p+1,...,t) is
P
(0.6) Yt -pft-p 1,...,t) = -Ta ¥t-p+]) ,

j=1

and the best linear predictor of Y(t) givemn Y(t - 1),... Y(t - p) is

T TR TS et ke Bt G R RS A e X =
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(9.7) Y(ejt - 1,...,t = p) = - E a. Yt - j)
j=1 ip

The recurrence relations of subsection 3.2.2 part B become

Y(t-plt-p+1,...,t) = Y(t-p\t-p+1,...,t-1)
(0.8) __p-1
" %p B e TP
and
Y(t|t-1,...,t-p) = ¥(t|t-1,...,t-p+1)
(0.9). 1
%op jfoaj p-1 ¥(t-p+y) -

(—a.pp) is the partial correlation coefficient between Y{t)
and Y(t-p) given Y(t-1,...,Y(t-p+1) , and by evaluating

(3.2.2.12), we obtain that

p-1 p-1
za”ln(j-p) 04,5180

(0.10) - app = p-l Kp-]_ .
jz_?oo.j’p_l R(})

Kp is the mean-square prediction error when ~e use

Y(t‘t-l....,t-p) to predict Y(t) .

Finally, the theorems of subsection 3.2.2 part C apply directly.
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In particular, Theorem 3.1 can be rephrased to say

17

(0.11) {
-

T
[ ™ arm) , || <p, 3=1.2

fl()j)(x) eikx dx =

and Theorem 3.2 implies that

1
(0.12) Kp decreases to K (0.0 as p2a .

T sy T iS5 WA < St S




w
s

-
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Appendix

3.A.1 Recursive algorithm

We provide a recursive algorithm to compute

% 1
EX P 14x,2
‘1 + T Gj e ‘
i=1 P
given Kp-l , ﬁ:j p-l}g;} and the sequence R(s) .

From (3.3.0.10), which is the equivalent of (3.2.2.12), we have

that
p-1
1-1 Q. = - a. R - K -
(1.1) e = T E Cg,p1 NITRG
From (3.3.0.9), which is the equivalent of (3.2.2.8), we have
that
1.2 = +a =1,...,p-1 .
(1.2) %p = %3,p-1 T %pp Cp-3,p-1 * J=lp
Finally, from (3.1.5.5), we have that
|4
(1.3) K. = XY a, R(i) , Q =1 .
P j=0 P Op

Using (1.2), we obtain that




~14] -

P

K =K , +a %
p p -~ pp j=1

cLp~j,p-1 R(D

P 2
| Z 05,1 RGP

= K -
p-1 Kp-l

The initial conditions are simply
(1.4) Ry = RO @ = I .

We have written a FORTRAN subroutine that computes fp(-) .

This subroutine is called AUTOREG and can te found on the next page.

P, .
~ Siee - PR R i st v
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SUJ."OJTIN& NUTURE'U (H '< ’M,Np, HLFHH'PHI' J4 ,‘(ng-, F’

JOMPUYES THE LOSFFICIZNTS AuLPrAA(.)y ACCIRIING T
& PECJURSALVE 8_522L1THMy ANJ TH= CuURFEZISFUNIJIING
FUNCTION Fila) AT THE ruINTS «({.)
INPUT~
W = velTJI® UF COUMFLEX FOURIER TRANSFORM,
OF DIMENSION AT LEAST M
n ¢t (K=1) IS THE ACIUAL GROER OF THE SCHEME
BoInG S0MPUTFD,y KeGe2
M ¢ (M-1) IS THE AAXIMUM OxDZIR OF ScHEIME
Tu 36 COMFUTC O
X = VECTI® 0OF VvALUES AT HWAICH Fte) Io TU
BE CUMPUTEDy OF DIMENSION NP} ~Pl.lieXe.EsPI
ILTFUT-
ALPHA = VESTOR OF COEFFICIENTS DZIFINING THE
APFRIXIMATINL FUNCTIuNyHAS T3 Bc DIMEN-
SICNS0 AT LEAST M
F = VzCTIR OF VALUES uF THIZ AFPROXLMATING
FUNCTION, OF CIMENSION NP
A.rHA, 2HI, JHy K4 ARE USED RECURSIVELY, THAT I3
THEIR VALUZS AT OQUTPUT FOX K QRZ USED A3 INPUT
FOR (<+1)

DIMENSIGN X(1),F(1)
SOAPLIX ACL)AL2HA(L),FHI(L1) yJHyKA, 6

TAQFI=6, 20018550

JA=CHPLX (L e y0s)
ALPHA( L) =CMPLK (1eyi0)

L=<~-1

PHI (L)=CHPLX(1 0,00)

IF{Kec Qac) KH=CONJGCA( 1))

D) & I=1,L
JHZJHFrCONJGLALL #1) ~PHI(I))
G==JH/KH

ALFHA (K) =6

IF(L.cQel) GO T2 5

00 2 I=2,L
ALPHA(I)=ALFHA(TI)+G*FHI(I-1)
SONT INUE

DO o I=1,K
QHI(IY=CONJGIALPHALK+1-1))
LH=KH=J4*CCONJG (JH) /CONJULI{KH)
CL=KH/THWIFI

D0 11 I=i,NF

G=CMPLX(1.,+0.)

03 12 J=2,4K

Fuz=J-1
G=G4rEXPACHFLX (Cay X (I)*FJ))=ALFPHA (J)
FEIN=C0C/(5-CaNJSL3N)

CONT INUE

~ETURN

INJ

[V

}
1
1
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CHAPTER 4

BIAS STUDY

The Autoregressive Mechod as an Approximation Method

Y AN Y S i




_[l{q..

The properties of the autoregressive approximator fp(.) depend
in a large measure on the functica f(.) being approximated. In this
chapter, we study the effect various hypotheses concerning f£(.) have

on the behavior of the bias function

bp(-) = f£(o) - fp(.)

especially the rate at which it goes to zero.

In this chapter, we follow Geronimus (1961) closely, except in

Section 4.2.




-
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4.1 Autoregressive representaticn
4.1.1 Convergence "in the mean"

We start our study with the case where F(s) is absolutely con-

tinuous and where its derivative f(s) has the following properties

17
(0 < | @) d&x = R(O) < =
-TT .

(1.1) ¢ 0 < In oy & - RO < -

ALl
| = < [ log £x) &x < 1log R(O) < =
-7 -7

Under these conditions, £(s) has the following autoregressive

representation
2
2 o >0
f(x) = HET . 1 ’
1+ 3 oye al £ (el
j=1 j:l}_ j
and
K
1 1 1
3 (X) = —2 . = e g e
p 2 2 2T *, ix, 2
1L+ z ey, e Al {@ple |
j=1
AL . 1
so, f(x) = > i 2 a.e. (theorem 3.4)
|(e ]

T
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Theorem &4.1:

Under the condition (1.1), we have that

) S |
£(x) fp(x)

T
(1.2) lim [
P2 -M

. f(x)d:.=0

and

A \f(x) - fE(x)\
fp(X)

(1.3) lim
poro -

dx = 0

Proof:

Note first that

| £(x) - fg(x>{

1 1
l f£(x) o fp(x)‘

£(x) fp(x)

So (1.2) implies (1.3).

Now,

| 1 1
[T " T =

‘ﬂ(eix)‘z _ ‘cp:(eix)‘Z\

< o (\ﬂ(ei"){ + ‘O:(eix)‘) . ln(eix) - cp;(eix)l
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Then

Tl 1 o ix 5, gz )
J - o f(x) dx < 21T (e )| + |9 (e
| fp(x)l J (‘ | + 19 1)

. \n(ei") - cp:(eix)‘ . £(x) dx

Using Schwarz' inequality, we obtain

\
17
1 1 ix * dx.q !
- o £(x) dx = 2m Hime™l + o el
j‘_ A E® T E @ \ ro "% F)
. ”ﬂ(eix) - c;(eix)“F
[ , 1%
Recall that llu(a)ll; = \f \u(e“‘)‘z o £(x) de
-7
We have shown previously that
* . ix .
llcpp(e )IIF = 1 (3.2.1.16)

and by Theorem 3.4

< 2
”ﬂ(eix)“F = /Eowj(on /\/K(O,O) =1,
i

thee™™) - co:(eix)ﬁ

F > 0,
P

(; which completes the proof.




.‘-‘
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Note that (1.2) and all other expressions involving can be

1
£(e)
rewritten using the special notation introduced in subsection 3.1.3,

e.z. for (1.2)

i lfi(x) - fip(x)]

lim [ ey x = 0 .
F?o T

Thus the statements about £(es) are nct exactly of the same form as the

statements about fi(e) .

For our second step we add some conditions to insure that the
orthogonal polynomials {¢h(.)}:=0 are uniformly bounded and so alsc

the {@:( o) }:=0 .

Recall that f£f(.) € Lip (&,2) 1if

Cm 2 ~l%
w,(8;£) = sup O +h) - @) Tdxy = o8 .
|h|<b L-rr ' J
condition (1.1)
(1.4) 1 O<ms f(x) SM<o , a.e. in [-m,1m]
f(e) € Lip (1/2,2)

Theorem 4.2:

Under condition (1.4),

1 1 |2

£(x) fP(x)

dx

|
o

il
(1.5) lim
P2 -7
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m e - £ (x) .2
(1.6) lim — dx = 0
f (x)
P2 - p\
Proof:
Note first that
Lo | MW - B (R - £ 0
£(x) fp(x)‘ f) < £(x) " M £,(x)
and so (1.5) implies (1.6).
Again
1 1| ix * ix ix, _* ix
£(x) fp(x)ls 2m (\ﬂ(e )|+ (e )\) R UCED RN Calbl
But under condition (1.4),
;Tr(eix)‘ S\/,_—l- s f(«) being bounded below
| m
and
|9 (e™)| s ¢ , by Theorem 3.6
So

A 2 o 2
1 1 1 1
m e f - dx < f l - l of(x) dx
S LA RN GO S FICO T IO
T 2
{ < ¢ . lﬂ(eix) - q::(eix) . £(x) dx
E S -TTi
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which goes to zevro according to Theorem 3.4,

This completes the proof.

A slight modification of condition (1.4) will provide us with

pointwise convergence.

4.1.,2 Pointwise convergence

,
condition (1.1)
O<cms f(x) £ M<o , a.e. in {-m,m]
(2.1) < ’
£(es) = g(o) s a.e, in [‘T\',TT]
va(é;g) = 0(63') , %(Q- <1

Theorem 4.3:

Under condition (2.1),

ut 2
(2.2) lim [ 1f(x) - £(x)| dx = 0
Ppreo T P
and
lim £ (x) = % - "—1&"? , uniformly
PP P !T\’(e )\ ] _
B . . S e
C(ER) mgm e ——s , a.e) Tt T ——
2 ‘"(eix)\Z -
Proof:

Under condition (2.1), we certainly have (1.4); but by Lemma S

of Ibragimov (1964), {\cpn(-)!}zgo 1s uniformly boonded from abeve and
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below, ji.e. 0O<«bs ‘cp_l(eix)‘ £ B<* . Thus

0<anp(x)$A<m, , for all x and all p

and (2.2) follows from (1.6).

To prove (2.3), we note that Theorem 3.7 can be applied so that

lim cp;(eix) - ﬂ(eix)

’ uniformly .
p S>®.

o A4 *m :
and by the previous remark ({]cpp(o)‘}: =0 1s uniformly bounded from above
and below)

L ogip —Lt— = L :

: * T 4x. 2 » uniformly .
2t P ‘cp:(e:.x)ﬁ 2 ‘“(eix)‘z

This completes the proof.

At what rate does the bias decrease to zexo?

condition (1.1)
O<ns f()EM< , a.e. in [~m,m]

(2.4) J £(e) = g(o) R a.e. in [-m,m]

g(s) has r derivatives -

{ s(r)(-) € Lip (z,2) , 0O<a =1

eI gt imssessomesmmmens ke -
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Theorem 4.4:

Under condition (2.1),
b, G0)| = o ® B<a - 1/2 .
Under condition (2.4),
b 0)| = 0P B<r+ea-1/2 -

Proof:

This is essentially Theorem 3.12 in Kromer (1969).

4.1.3 Properties based on the partial correlation coefficients

As in Section 3.2.2, Part C, we can use the partial correlation
coefficients tc describe the properties of the bias function. We obtain

results that are similar to those of the two previous sections.

Theorem 4.5:

@

2
1£ \Gnnl < o ’
n=]1 -
A1
1 1
1lim f - o f(x) dx = O
pre -1 £(x) fp(x)

(: and




FEUaN
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£(x) - £ (%)
fp(x)

T
linm f dx = 0
P2 -1

x©
Proof: By Theorem 3.9, I ‘annlz < o implies that 1log f(s) is
n=1

Lebesgue-integrable, So we can apply Theorem 4.1.

Theorem 4.6:
3
, for n large enough,

1f ‘o'nn‘ < n log n
at all x such that 0 < £(x) .

lin £(x) = £(x) ,

PO

Proof: By Theorem 3.10, we have that

, at all x where £(x) >0

lim (p*(eix) = Tr(eix)
Pw
and so
* 3 2 [ ]
Pae @ (™) jm(e™)?

We can get now different estimates of the bias.

Theorem 4.7:
@©

1If 3 ‘ann‘ < » , then, F(e) 1is absolutely continuous
=1

[ P




: f(x) 2 m > 0 , x &[-,7]

1 1 [--]
- $Ce T oy
£(x) fp(x) k=p‘ ‘

b

Proof:

The first two assertions follow from Theorem 3.12. Then, 2s in
Theorem 4.2,
1 __1
£(x) fp(x)

< Co ;, ‘Gkk‘ , by Theorem 3.12.
k=p

If we add to the hypothesis of Theorem 4.7 that £(«) is bounded
from above, then we can prove that ‘f(x) - fp(x)l goes to zero uni_fomiy

«©
at the same rate as % \a'kk‘ . : T
' k=p ' . :

— S - e -———— - -

- M LR e T e, S e
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4.2 Fourier analysis

The Fourier series representation of f(e) is

-] <
¥ R(v) e 1vx
V= ~x

£f(x) ~

|-

and the Fourier serias representation of fp(.) is

1 2 ~ivx
fp(x) ~ 2 vaz.;-w Rp(v) e ’
where
(
R(V) , fvi=sp
P
RP(V) = < -jelaijp(v +3) V< -p
Rp(-v) s v>p

-

Now it is always true that the Fourier series representation of £ (.)
converges pointwise to fp(.) for almost all x in [-m,m] . This
follows from the fact that 1Rp(v)‘ decreases exponentially (see
Appendix 4.A.1).

- -]
1f b ‘R(v)‘2 < o« , then f(s) 1is square-integrable and
V= =m

u »
lim [ |£G) - £(0| dx = 0 .
P> =T P

v A s = =T
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x
1z 5 '\R(v)‘ < = , the Fourier series of f£(e) converges
V= =
pointwise to f(e) and we can write the bias function exactly as

1 -ivx
b (X))} =35= o b (R(v) - R (v)) e a.e.
P 2m v o
We obtain the following bound
1
b (x) £ =—=| T ‘R(v)\ + ‘R (v)‘ .
' N [vpe P

And sc for almost every x in [-m,m] , the rate of fall-off of bp(x)

to zero is the slowest of the rates of convergence of E{R(v)‘ and

TR, (N}

i

R e b g e
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Appendix
4,4.1 Rate of fall-off of an autoregressive covariance function.

Suppose {X(t), te @} 1is a stationary autoregressive process of
order p , i.e., there exists an orthogonal process {e(t), tc2Z} such

that

P
X(t) + T a, X(t-3) = e(t) ,
=1 3P

then

T
Y(t) = (X(t),X(c-l),...,X(t-p+1))
is a Markov process and as such its covariance function is of the form

Ry() = Ry(0) « [P(1)]Y .

Now
R(V) «es R{v-p+1)
R (V) = : , where R(v) = E[X(t) X(t+v)]
R(v+p-1) ... R(v)
and

i 2 i S L r o g s © s ©
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- c’lp 10 PN 0
- qu 010 . 0
Pyl = :
a 00 e 1
- ap-lsp
- a 00 cee O
%op

The characteristic polynomial of DY(I) is simply

P _ -
y) = W+ g a WP
j=1 P
which has also been referred to as the indicial polynomial of the con-
stants {l’alp""’aép} . Pagano (1972) has shown that the stationarity
of X(.) implies that all the zeros of U(e) are strictly within the

unit circle,
Thus all the eigenvalues of Pv(l) have modilus less than 1 .,
By using the Jordan canonical decompssition of QY(I) , it is

seen that

lim [P, (1] = 0

Vo Pxp

and by the same token that R(v) goes to zero exponentially.

T e S s i, o A e M o Nt e am e g AT Y cEw AL S R e T e
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CHAPTER 5

CONSTSTENCY STUDY

The Autoregressive Method as an Estimation Method
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In this chapter, we want to establish the consistency of the
autoregressive method and find the rate of consistency 'n terms of a

relation between the order of the estimator and the sample size,

-— - T e S I




-
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~

5.1 Convergence of R(e) to R(e*)

. The autoregressive estimator of order p depends on the data
through the R(*) subsequence and through the extreme values as the
data is rescaled to ([-mw,7f] . Typically

A " ivx
Rev) = [ e"ar_(x)
~T7
where Fn(x) is usually a step-function and, in many statistical appli-

cations, Fn(x) is a function of the empirical distribution function.

{Fn(x) , X€ [-TT,TT]} is a stochasgtic process indexed by x . We

agsume throughout this chapter that this process has the following

properties:
4
{ﬁ(Fn(x) - F(x)), xe[-T,m]} converges to a Gaussian
process with mean 0 ard covariance function o(x,y),
x,y € [-T1,T] , where
- F(¢) has a derivative £f(e) 2 0 , integrable
TT -
- = <[ log £(x) dx <=
uw iﬂ
< -
(1.1) j‘-ﬂ iy x<=
.‘TT L
-e<| [ o(x,y) dxdy <=
-7 -1
17 A
-] EF @1 ax » [ Fx) 3x
v R
LA L n 1
-I _r n Cov(F (x),F (y)) dxdy - j‘ f o(x,y) dxdy
g - T n n -no-m

B e e i L T

Ty
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Theorem 5.1:

Under condition (1.1), for any p21 ,

Re(R(v) ~ R(V))
(1.2) \7 -—D->Mvrx@,s(v)) , vl sp

Im (R(v) - R(v))] °7°
where
A(v) B(v)
S(v) =
B(v) C(v)
il
A(v) = A(0) + 2 » (-l)v‘f v sin vx <O(TT,x) - 0(—“,1:» dx
=TT
m 2
+I I v sin vxsin vy O(x,y) dxdy
- -1
A(O) = U(ﬂnTT) + c('ﬂ)-ﬂ) - ZG(TT,-TT)
ki
B(v) = (-1)V ] vcosvy Gemy) - G(W,y)) dy
-
T )
-J. ‘r v sin vx cos vy O(x,y) dxdy
- -1
B(0) = O

UL § 2
C(v) ‘—‘f I v" cos vx cos vy o(x,y) dxdy
T 17

c0) =¢C

{The mode of convergence is in distribution.)




s
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Proof:

ﬂ ’
Rv) = [ ear ) lv] = p
17

Using integration by parts, we obtain
A 3 ivx
(1.3) fev) = GDVFE.M - F (=M [ dveF _(x) dx .
n n .t n
Taking expectation of both sides,

T
Eff(v)] —> (-DV[F() - F(M1 - [ ive” T F(x) dx
n—)@ ““

which is equal to R(v) as can be seen by integrating by parts again.

For the covariance, we verify the exactitude of B(v) only; the

oilier terms can be found in the same way.

a Cov (Re(%(v) - R(v)} , Im (ﬁ(v) - R(v)))

o,

il
cos vxd(Fn(x) - F(x)) . f-ﬂsin vyd(Fn(y) - F(y))] .
Integrating by parts, we obtain
; . "
v . ,
nE \(-1) (Fn(ﬂ) - Fn(ﬂ)] = (-1) (Fn(-ﬂ) - F(-")] + .f_nv sinvx (Fn(x) - F\x)) dx}

0 Y
. {—I vcosvy{l’-‘n(y) - F(y).; dy}}
R

s s e S A A
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It is easy to obtain B(v) from that point.

Finally, as the integral of a Gaussian process is Gaussian, we
obtain the third element of our theorem, i.e., asymptotic normality.

This completes the proof.

1t is also clear that ﬁ(v) is a consistent estimate of R(v) ,

that is

P

(1.4) R(v) Rv) , Ivlsep , p21 .

n->®

This follows from Theorem 5.1 and Chebyshev's inequality.

We can then get a multivariate analogue of Theorem 5.1.

Theorem 5.2:

Under condition (1.1),

re (R(0) - R(O))\\\
Im(ﬁ(O) - R(O))) 0
\a : MVN(Q_,E(R)) , k<p
no®
re(R(k) - R(K))
m{R(k) - R(K)) }
N\

where
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(k) = [L‘j,v] , i, = 0,1,...,k
Ejj = S(j) defined in Theorem 5.1
AjL BJ’L
= <
it i<t
i 72
Ly = Iy

. A
Ay, = -1)IMa0) +(-1)3 [ tsintys(my) - o(-my)) dy
-7

T
+¢-1Y[ §sin fy(aem,y) - a(-m,y)) dy
=TT

T
+I J‘ j¢ sin jx sindy o(x,y) dxdy
- -1

A = A(0) , as in Theorem 5.1

ki
B,, = (-3 [ 2 cos ty(a(-my) - aim,y)) dy
7 4

m
- f J‘ j4 sin jx cos Ly o(x,y) dxdy

- =T
2 A1
D,, = (-1)° [ § cos jy (s(-my) - o(my)) dy
it S
LR
-f .f 13 sin {x cos jy g(x,y) dxdy
-7 -
A 1
c = f J‘ jt cos jx cos Ly og(x,y) dxdy
i - -
C04, = By = 0

Proot:
The proof is really equivalent to that of Theorem 5.1 and so it is

omitted.

T —— TR, . - S e e e T ST
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We will come back to these formulas in the next chapter when we

examine three different routes to density estimation.

—— b v g e s - prora
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A~ A
5.2 Consistency of gp and Kp
It would be possible without a doubt to carry out the same program
as Kromer (1969). But our main interest lies in relating the order of the

autoregressive estimator to the sample size,

Lemma 5.3:

For any p~dimensional vector ﬁp and matrix Xp (random or not),

define
lig 12 = % ‘x.‘z
“P i=1 1
K12 = % |x |2
P g,
llxpllH = ”:le =1{pr . ;:,pll}
~p
Then,
(2.1) llxp . ;SPH = ng,llH . ||5pl|
lep”H < ||xp|l < pe max{\Xij‘ , i,5 =1,...,p}
(2.2) 4

‘"Ep“ s \Vp ¢ max{}xi\, i=1,...,p}

N 12 vy
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(2.3) If Xp is Hermitian and positive definite, then

prHH = xmax(xp)

nx'ln

)\nln(x )

where )‘max(xp) (Xmin(xp)) is the maximum (minimum) eigenvalue of ;Ip

(2.4) 1€ ‘Ip is non-singular and
Ik -yl s 228 e>0
P HY g
. ny'lun
then, IxMl, s =
p H €
Proof:

Most of these assertions are well-known., For (2.4), see Davies

(1973).

Theorem 5.4:

Let £(e¢) be integrable and

m < f(x) <M , a.e, in [-m,m] .
4 i
Let R (v) = _r evxf(x) dx |,
-

~- T e———. Y T e

M merdn e ————  a e ot 4 -~ -

[
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! i
Let
R (0) ... R(p-1)
R, = . .
R(1-p) ... R (0)
__ |
Then

(2.5) 2rm < kmin(Rp) s )‘max(Rp) S Me 21

‘:\.

Py

and
lim )‘min(Rp) = m * 21
pox

(2.8) ¢
lim )‘max(Rp) = M e 2T
pre®

Proof:

See Grenander and Szegd (1958), Chapter 5.

Theorem 5.5:

If 0<ms f(x) SM<eo , a.e. in {-w,m} and

lim ) . 0 R
nreo fn_

then
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1% oty = Lpm) —=> 0
(2.7)
- ' P
O

Note: From now on, we will use p instead of p(n) to simplify the
notation, but with the understanding that p is allowed to increase with

n at the rate specified.

Proof:
Let
@ = (@ o )
~p 1p’ """’ "pp
& = (; & y!
~p 1p’* """ "pp
- - - !’
Ep (R( 1)"")R( P))
L - (R(-1),...,R(-p))’
(R(0) ... R(p-1)]
R = . .
P . .
. | R(1-p) ... R(0)_
e A
. R(0) ... R(p-1)
R = : :
P . a”
R(1-p) ... R(O)

N r— A e e b

'
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We then have

~ A-l A ~
2.8 @ -a = R [ - + (R -R)Q .
(2.8) * " %p p LB~ %) By o Ry ~p]

This is true because the Yule-Walker equations can be written

Rq, T -

P ~p Ep

A A ~

Rq = =T .

P ~p ~p
A ~1 T A A “ 1
fa -all s IR e e -l + e =Ml - US Iy by (2.1) .
l~1> ~p ”P”H .l~p 'r“pl P P ~p | y (2.1)

S

Now, | Rp - Rp”H < p - max{|R(¥) - k(W] , |v] = p} .
By Theorem 5,2,

° 1
(2.9) |R(v) - R(V)| = QP(-,.-)

~

meaning that R(v) converges in probability to R(v) independently of

v at the rate of 1l//n as n- o
Thus

g - rIl = o /-2
P P

1
P [/ -
4 ?

A3

Now as 1lim —%— = 0 ) therec exists € > 0 such that
n’ro Vv
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1-¢
2 ‘ = = (1-¢€) - )‘min(Rp) . by (2.3)

-1
Ay i "l
So, HRP HH =< —‘g-— , by (2.4)
< e-xl wy o by (23
min' p
1 b
el e » by Theorem 5.4
Thus,
le - gl s—L [n“- PO T T N L
®p " R Teemedm| o p IRy - By ug“p”J ’
el =\yZle. | 5 VZ'al|® <o , by Theorem 3.3 :
P j=1 1P p2e j=1 J ’

H;p - gpli < /p c max {|R(V) - R(W] , |v| s} , by (2.2)

= OP(%) , by (2.9) )'

s . - 2. -
”Rp Rp“ op\ﬁx—} , b- (2.2) and (2.9)
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So
e -all = o"‘,'-E—\
p.y'n
P
i.e., llo -all —> o0 , if 2 —> 0 .
n oo ﬁ n-=>«

For the second part of the theorem,

2
'

=
W

P A o~ P
-z
s~ % jljoo-ij(j) j=0aij(j) , by

|}

P A 4 R
N L (s 5 - \
on {Gjp(R(J) R(3)) + R(D) @5, Gjp,} .

{ - 4 "-‘ . = 3 - 3 3 - < -
&, Kp\sj'fo {ios! [R(H) - R+ [RGD - fag, ejp!}

s \j%()\&jpyz)s‘ ~,/;r.max{\§(j) - R(1), |3] s p)

Now, we certainly have

M1
J \f(}:)\zdx s m.w<e
-1

and so

P




VP

Ji\m‘
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\% %
P

LDV oo 3 ‘R(J)‘Z\
j=0 J j=0

~

({R(j)}§=o is the set of Fourier coefficients of f£{¢) ). Finally, as
- P
leg -gll—> o0
P P

~ @ %
P 2
“G n —_— (?I‘Q.j‘ ) € =

~

so, 1Kp - Kp\

it

)

Opﬁ_

This completes the proof.

The OP(o) notation was introduced by Mann and Waid (1543).
~ A A
. _ ’ _ ’
Redefine E"p = (aop";"qpp) and %P (QOP,...,QPP) . Theorem 5.5
still holds because qop = aop =1, and it follows from it that

A
ng - g“ -—E—> 0 , where @ = (G'O’“l’ 2,...)’ , because

le -oll <o -cll + llo - all
P~ ~p  ~p ~p ~

and
2 M2 15x|2
- = - hd =0
ng all ‘fﬁ jz;;o(c.jp aj) e dx , @ =0, §>p)
1 |2
l Y - ijx .
< - .[‘:!_, (’c'jp a.j) e f(x) dx
K . lilmel®y - o (el® “_Knl * x|
< [ﬂn(e )-cpp(e IlF+ll- TS -Hepp(e )llF} .

——> 0 , by Theorem 3.4, (3.3.0.12) and (3.2.1.16),
Pl
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also, pr -kl >0, as K, > K by (3.3.0.12).

Berk (1974) also proves the consistency of the autoregressive
coefficients, but his rate of consistency is p3ln and he has to make

the further assumption that

: 2
pe T (& —

(see his Lemma 3 and equation 2.17).
We only require p2/n - 0 ., Even though our contexts are different,

our proof can be adapted to Berk's context.
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A

5.3 Consistency of fp(-)

From Theorem 5.5, we will now obtain results that parallel those

of Chapter 4,

Lemma 5.6:
3/2
If 0<ms f(x) S@ , a.e., in [-m,M] and lim = 0
n->w© ‘/ ’
then
Tx ix * ix P =
‘cpp(e )-cpp(e ) n_’m>0 , uniformly in x.
Proof:

“% % 4 1 P~ e
e (™) - 9 (™) = = T a e L pa ot
P P Jk, =0 P Jk, 3=0 TP

2 \o. - |

_al Jp jp y 1%
v, *e1*) - cp( i) < 120 —* = . 115 e,
‘ ‘ % p Kp Kp J-‘-‘O‘ JP‘

el el |
s 7z + Yl . ﬁ-llgpﬂ
P

K
p

i AR ee———
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N Y r-—
As |k -K\-——?——>o , IV k -vx\——g——>o
P p P p
— 1 1 P
because * is a continuous function and \ = - = > 0
j—K'P KP ‘

because the reciprocal is a continuous function and

0<JE°<\[T<;<[E;' <w , by (3.3.0.12) . Thus

ety - | = o (B
1% Ppe Dl = P\fa |

This completes the procf.

Theorem 5.7
If 0<m<=< f(x) SM<wo , a.e., in [-T7,7T] and
an
D
i —=— - 0 , tten
nse Vo
7
n 1 _1 dx P > 0
-m £ k) E(x) noe
p
Proof:
Ul W T
e et s [ |- L ax [ ftx)~f(1x) dx
S INCOREOR S EXORIENCS - | “p

By Theorem 4.1, with the addition that £(.) is essentially

bounded, we have that

Iﬂ 1 - 1 I dx -—>
) ECI R T p>e

( ]

e e A —t  ———— s oy A~
- g,:,‘w\'-.“\."' - o -
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On the other hand,

A\l
. I 1 R 1
me | |7 £ (%) dx
- fp(x) P

ix

m A . ~ .
< m Iﬂ(\m;<ei")| + 19, + |9 - @™ - £ o

L X u . %
sm 't(fn lfo;(eix)lz- £(x) dx) + (.fn\ep:(elxﬂ . £(x) dx) ]

% 4 * i 2 X
‘;.f l¢p(e1x) - wp(elx)\ o £(x) d%?‘

As
~ . % s
|¢;(elx) - ¢$(e1x)‘ 2 -0 , uniformly in = ,
]Cp:(eix) . cp’;(ei")\2 ~2 > 0, uniformly in x
and so
T S% ix * 4x 2 P
J1eie™ - g @™)|? e fx) ar E> 0 .
P P

We also have that
% % ul .
‘[“m:(elx)‘z o £(x) dx] - [J‘ ‘q,:(elx)‘z . £(x) dx]%l_p_> o
-

because the square functiop and the integral are continuous transforma-

tions.
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oL

Finolly, (| \cpp(e“‘)\z . £(x) dx)% =1, by (3.2.1.16) .
-1

Thus,

™o 1

-mif (x
p() P

{ 3/2
dx=oL
n

This completes the proof.

Theorem 5.8:

Under condition (4.1.1.4) and if 1lim E_ -0

then
ul
p 1 1_‘2 P .
J Y --f_(x_) dx —=> 0
- £ (x)
P
Proof
T 1T
1 1 |2 1 1 |2 1 1
< dx s - ax + [ <
m 1E (x) f(x) | o fP(x) 1t fp(x; £(x)
P p
By Theorem 4.2, we have that
1 1 {2
[ \f @ " Tm| * 5= 0 -
-ﬂ‘p

On the other hand,

..
!
|




"'30‘

~

TT N . 2 A - 2
< 42 [ (\cp:(eix)\ + lore ™)) o™ - @ (™))" 00 ax
-17

By Theorem 3.6,

\w:(eix)\ < ¢ , independently of x and p
By Lemma 5.6
o™ - ehe™| 52
that is
™) = G + o) £ € +op M)
and
‘;‘p:(eix) N cp:(eix)\ = oP(PE?)
Thus,
bl e Tl
[ 3i
" el

A

- N T, PN - o e e W ST
l.m. S0l ST .
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This completes the prcof.

Theorem 5.9:

Under condition (4.1.2.1) and if

3/2
lim P__ - o,
n->wo \/n
then
— 1 - 21T o ‘n(eix)\z _2.._.> 0 , uniformly
£ (x)
%
and
A 1 ' ] ’
%) - o ix..2 > 0 , uniformly
PR e
Proof:
!
P et <
£,(x) 1t % >
P P
By Theorem 4.3,
1 ix.,2
fp(x)- 2m o |m(e )| — 0 , uniformly

- 21T . ‘Tr(eix)\zl

R e a i

-
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Ou the other hand,

s (O™ + of ) elpp(e™ - vyt

n

3/2 .
< 21 (2C + o5 (1)) » OP(E\I:)

as in Theorem 5.8.

Thus,

( 3/2)
= 0 |B—
P ﬁ

For the second part of the theorem,

1 _1
Ep(x) fp(x)

p 1 1 ~ 1 1
£(x) ~-s= =< [£(x) - £(x) +|f(X)~-35°—75
P 2 ‘n(eix)‘Z P P P 2 \ﬁ(eix)\Z
By Theorem 4.3,
1, __1
‘fp(x) < o |n(eix)\2| p‘-)c> o .

p P
‘fp(x) - fp(x)‘ E::) 0

because the reciprocal function is a continuous function and




-183-

0<as fp(x) SA<e , forall p and all =x

This completes the proof,

The rate of consistency that is achieved is of the order of

3
B
n
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CHAPTER 6

THREE WAYS TO DENSITY ESTIMATION

T v T et e
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»

6.1 The Three Ways and the Basic Assumptions

We assume from the start that we want to approximate the densgity
of a bounded (1.1) random variable whose range is taken to be [-11,17]
without loss of generality. Note that we can always replace the word
“Yapproximate" by "estimate." Also, we will work on the natural interval

of dafinition of each function.
The three basic ways to approximate a density are:

-— the direct approach: approximate £()
— the sparsity approach: approximate q(e} the derivative of the

quantile function and form £(Q(t)) = where

t
Q(t) = q(u) du
0

1
q(t) ’

~— the hazard approach: approximate h(e) the derivative of

X
(- log (L-F(e)) and form £(x) = h(x) *» exp (- [ h(u) du)
=77

The distribution function F(e) is always a bounded nondecreas-
ing function and, under (1.1), the quantile function Q(¢) 1is also
bounded nondecreasing, but the integrated hazard H(e) 1is unbounded

though nondecreasing.

Thus H(*) does not really fit in here even though we have
obtained good empirical results in Part I of our research. 1t is to
be noted that we never attempted to approximate h(e) on the whole

range [-1,7T] but rather on [-M,m-¢] .

- RIS ot e
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The log-integrability condition can then be expressed in various

ways:
[ n 1
[ 1og £(x) 2x = [ -q(t) ¢ log q(c) at
- 0
1 u
[ logarryat = [ £(x) « log £(x) ax
0 T
(1.2) <
m-€ TT-€
» £(x
log hi} dx = | log S {69 T
-.I_‘ﬁ -1t 1-°r{x}
J-€ 1-8
L J log i(x) ax = J‘o -q(t) » log {(1-t) » q(t)} at
-ﬂ “

I1f the interval [-11,m] is replaced by (-=,®) , then log q(t)
integrable is the weakest assumption. That gives more weight to the
indication that the sparsity approach might be preferred in "tough" sit-
uvations as seen in Part 1. Another reason to prefer the sparsity
approach is that the sparsity is naturally defined on the bounded inter-
val {0,1] . The only problem is then the unboundedness of the quantile
function, i.e., c¢(+) will not be integrable. But research has started
to extend the applicability of the autoregressive method in that

direction.

g g ————— e,
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6.2 The Empirical Processes

In Section 5.1 we have imposed certain conditions on the empirical
process {Fn(x),xez[—ﬂ,n]} from which we estimate the R(*) sequence.
We now illustrate what the general formulas look like iun the case of

density estimation.

6.2.1 The Direct Approach

In the direct density estimation case, Ft(x) is the empirical
distribution function. It is well known that Y@ {Fn(x) - F(x)} con-
verges to a Brownian Bridge process, that is to a Gaussian process with

mean zero and covariance function

@y oy = F(1-rw) ,  xsy .

Using the same notation as in Section 5.1, we have for instance that

LLERL 2
A(v) = _f f v sin vx sin vy o(x,y) dxdy
- -7

(1.2) <

T o
B,, = -f [ 3¢ sin §x cos Ly o(x,y) dxdy
L H e e

The other formulas can easily be guessed from those two.

B e o S e —— — ——
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We can simplify them even more when we carry out the integration:

rA(v) = Var (cos vX)
(1.3) <

B

.

= Cov (cos j X, sin 4 X)

i

where X is distributed according to F(*) . Also we find that

A

(1.4) n Cov (R(}).R()) ;57> R - 4) - R(I) R(-2)

which can be written as

f“ei(j"’)" £(x) dx - J"ﬂeij" £(x) dx o j’ne’“" £(x) ax .

- - -7
This can be contrasted with results obiained in time series analysis as
in Kromer's dissertation (1969). Let us note first that Kromer was
estimating the spectral density of an observed real time series whereas
we are estimating the spectral density of a complex hypothetical time
series. In his Theorem 3.2, Kromer shows that

i(i)x

~ ~ 17
(1.5) 0 Cov (R(j),R®)) —=> 2+ [ (e 22T 200y an

-7

where f(¢) 1is the spectral density of the real time series.
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g

We emphasize that the important difference is not between real
and complex, but between observed and hypothetical. That is the differ-
ence that forces us to use a different type of estimator of the R(e)

sequence.

So our analogy between density cstimation and spectral density
estimation breaks down at the point where we evaluate the variance of

the estimators.

6.2.2 The Hazard Approach

In the hazard approach, the empirical process that we have used

is

(2.1) log (1 -

n
a+1 Fa)

where Fn(x) is the empirical distribution function as in 6.2.1,

By using the delta-method, we can find its limiting distribution

to be Gaussian with mean 1lcg (1 -F(x)) and with covariance function

F(x){1-F

(2.2) o{x,y) =
(1-F0)?

Note that o(x,y) m> @

e e - 5 s e e i e
—ii — Wy ko7 BTSRRI
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The form (2.1), though satisfactory in practice, is quite unsuitable for
theoretical study. We need a procedure that will never take us arbi-

trarily close to F(x) =1 .

6.2.3 The Sparsity Approach

In the sparsity approach. we use the empirical quantile process
{Q(t),0<t=s 1} . 1In the literature on order statistics, we find
n
that \[n (Qn(t) - Q(t)) 1is a Gaussjian process with mean 0 and covar-

iance function

v

(3.1) o(ty,ty)) = t,(A-t,)-q(ty) »q(t) , 0=t <t, <1

- -

provided that q(e) is continuous and finite (see for instance Cox

and Hinkley (1974), Aprendix 2).

There is no real simplification obtained in trying to carry out
the integration as in {1.3). But we can still estimate the variances
and covariances of the R(+¢) sequence by using an estimator of (3.1)

in formula (5.1.1.2). This last foraula 1s given on [-w,TT] sc car=s

has to be taken in reformulating (3.1) :

’ i
+7y - +T i
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6.3 Conclusion

We have started Part 11 with some questions carried over from

our empirical experience. Can we now provide some answers?

For example, we have uncovered the "odd-even" phenomenon, but we
cannot explain it as such. It does not appear very markedly in estima-
tion problems, probably because the estimators we start with are very

erude.

P

Symmetrization works very well in the exponential case, but not
so well for the chi-square., One reason could be the effect it has on

the characteristic function.

For an exponential, the characteristic function goes to zero as
1/v , but its real part, which is the characteristic function of the
symmetrized exponential (the Laplace distribution), goes to zero as
1/v2 .

For the chi-square with 4 degrees of freedom, the characteristic
function goes to zero as 1/v2 and so does its real part. Thus there

is no real gain in symmetrizing in such situations.

We have accumulated quite a lot of evidence as tc transformations
of data with regard to densi‘y estimation. The three approaches we
used are not exactly equivalernt. In Section 6.1, we underlined the
assumptions behind each and, ia Fart I, we stressed the relations

between the approaches and qualitative aspects of the data.

- e a e ——
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The best conclusion in practice would be to use the different
approaches on the same data. So far it seems that the quantile approach
is quite robust. We illustrate this statement by pictures of the
exponeatial and the normal obtained via the quantile approach (see
Fig. 1 and 2). 1In Figure 1, we have averaged the exponential approxi-
mators of orders 8 and 9. In Figure 2, we have the normal approxima-

tor of order 9.

L - NN TSp e e m——— e
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